Unverified Commit dd9d483d authored by Julien Chaumond's avatar Julien Chaumond Committed by GitHub
Browse files

Trainer (#3800)

* doc

* [tests] Add sample files for a regression task

* [HUGE] Trainer

* Feedback from @sshleifer

* Feedback from @thomwolf + logging tweak

* [file_utils] when downloading concurrently, get_from_cache will use the cached file for subsequent processes

* [glue] Use default max_seq_length of 128 like before

* [glue] move DataTrainingArguments around

* [ner] Change interface of InputExample, and align run_{tf,pl}

* Re-align the pl scripts a little bit

* ner

* [ner] Add integration test

* Fix language_modeling with API tweak

* [ci] Tweak loss target

* Don't break console output

* amp.initialize: model must be on right device before

* [multiple-choice] update for Trainer

* Re-align to 827d6d6e
parent eb5601b0
......@@ -130,6 +130,7 @@ proc_data
# examples
runs
/runs_old
examples/runs
# data
......
......@@ -306,8 +306,9 @@ setup your environment to run the examples.
The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
- `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
- `run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
- `run_glue.py`: an example fine-tuning sequence classification models on nine different GLUE tasks (*sequence-level classification*)
- `run_squad.py`: an example fine-tuning question answering models on the question answering dataset SQuAD 2.0 (*token-level classification*)
- `run_ner.py`: an example fine-tuning token classification models on named entity recognition (*token-level classification*)
- `run_generation.py`: an example using GPT, GPT-2, CTRL, Transformer-XL and XLNet for conditional language generation
- other model-specific examples (see the documentation).
......@@ -317,7 +318,7 @@ Here are three quick usage examples for these scripts:
The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
Before running anyone of these GLUE tasks you should download the
Before running any of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
......@@ -333,7 +334,6 @@ export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC
python ./examples/run_glue.py \
--model_type bert \
--model_name_or_path bert-base-uncased \
--task_name $TASK_NAME \
--do_train \
......@@ -360,7 +360,6 @@ Parallel training is a simple way to use several GPUs (but is slower and less fl
export GLUE_DIR=/path/to/glue
python ./examples/run_glue.py \
--model_type xlnet \
--model_name_or_path xlnet-large-cased \
--do_train \
--do_eval \
......@@ -386,7 +385,6 @@ This example code fine-tunes the Bert Whole Word Masking model on the Microsoft
```bash
python -m torch.distributed.launch --nproc_per_node 8 ./examples/run_glue.py \
--model_type bert \
--model_name_or_path bert-large-uncased-whole-word-masking \
--task_name MRPC \
--do_train \
......
......@@ -246,7 +246,6 @@ and unpack it to some directory `$GLUE_DIR`.
export GLUE_DIR=/path/to/glue
python run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
......@@ -272,7 +271,6 @@ Using Apex and 16 bit precision, the fine-tuning on MRPC only takes 27 seconds.
export GLUE_DIR=/path/to/glue
python run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
......@@ -296,7 +294,6 @@ export GLUE_DIR=/path/to/glue
python -m torch.distributed.launch \
--nproc_per_node 8 run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
......@@ -329,7 +326,6 @@ export GLUE_DIR=/path/to/glue
python -m torch.distributed.launch \
--nproc_per_node 8 run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name mnli \
--do_train \
......@@ -369,7 +365,6 @@ Download [swag](https://github.com/rowanz/swagaf/tree/master/data) data
#training on 4 tesla V100(16GB) GPUS
export SWAG_DIR=/path/to/swag_data_dir
python ./examples/run_multiple_choice.py \
--model_type roberta \
--task_name swag \
--model_name_or_path roberta-base \
--do_train \
......
......@@ -11,7 +11,6 @@ export DATA_DIR=./glue_data/MRPC/
export MAX_LENGTH=128
export LEARNING_RATE=2e-5
export BERT_MODEL=bert-base-cased
export MODEL_TYPE=bert
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SEED=2
......@@ -25,7 +24,6 @@ mkdir -p $OUTPUT_DIR
export PYTHONPATH="../":"${PYTHONPATH}"
python3 run_pl_glue.py --data_dir $DATA_DIR \
--model_type $MODEL_TYPE \
--task $TASK \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
......
......@@ -35,8 +35,8 @@ class GLUETransformer(BaseTransformer):
def training_step(self, batch, batch_idx):
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.hparams.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if self.hparams.model_type in ["bert", "xlnet", "albert"] else None
if self.config.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None
outputs = self(**inputs)
loss = outputs[0]
......@@ -95,8 +95,8 @@ class GLUETransformer(BaseTransformer):
def validation_step(self, batch, batch_idx):
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.hparams.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if self.hparams.model_type in ["bert", "xlnet", "albert"] else None
if self.config.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None
outputs = self(**inputs)
tmp_eval_loss, logits = outputs[:2]
......@@ -179,7 +179,7 @@ if __name__ == "__main__":
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
args.output_dir = os.path.join("./results", f"{args.task}_{args.model_type}_{time.strftime('%Y%m%d_%H%M%S')}",)
args.output_dir = os.path.join("./results", f"{args.task}_{time.strftime('%Y%m%d_%H%M%S')}",)
os.makedirs(args.output_dir)
model = GLUETransformer(args)
......
......@@ -64,7 +64,6 @@ To start training, just run:
```bash
python3 run_ner.py --data_dir ./ \
--model_type bert \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
......@@ -125,7 +124,6 @@ To start training, just run:
```bash
python3 run_tf_ner.py --data_dir ./ \
--model_type bert \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
......
......@@ -4,7 +4,7 @@ curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-dev.tsv?attre
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-test.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
wget "https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py"
wget "https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py"
export MAX_LENGTH=128
export BERT_MODEL=bert-base-multilingual-cased
python3 preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
......@@ -17,8 +17,8 @@ export NUM_EPOCHS=3
export SAVE_STEPS=750
export SEED=1
python3 run_ner.py --data_dir ./ \
--model_type bert \
python3 run_ner.py \
--data_dir . \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
......
......@@ -16,656 +16,264 @@
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """
import argparse
import glob
import logging
import os
import random
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from seqeval.metrics import f1_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from torch import nn
from transformers import (
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
get_linear_schedule_with_warmup,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
from utils_ner import NerDataset, Split, get_labels
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), ())
TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"]
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to gobal_step of last saved checkpoint from model path
try:
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
except ValueError:
global_step = 0
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
set_seed(args) # Added here for reproductibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev")
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""):
eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation %s *****", prefix)
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
if args.n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=2)
label_map = {i: label for i, label in enumerate(labels)}
out_label_list = [[] for _ in range(out_label_ids.shape[0])]
preds_list = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]])
preds_list[i].append(label_map[preds[i][j]])
results = {
"loss": eval_loss,
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list),
}
logger.info("***** Eval results %s *****", prefix)
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return results, preds_list
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}".format(
mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length)
),
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
examples = read_examples_from_file(args.data_dir, mode)
features = convert_examples_to_features(
examples,
labels,
args.max_seq_length,
tokenizer,
cls_token_at_end=bool(args.model_type in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ["roberta"]),
# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(args.model_type in ["xlnet"]),
# pad on the left for xlnet
pad_token=tokenizer.pad_token_id,
pad_token_segment_id=tokenizer.pad_token_type_id,
pad_token_label_id=pad_token_label_id,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
)
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--labels",
default="",
type=str,
help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
labels: Optional[str] = field(
metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--max_seq_length",
max_seq_length: int = field(
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
parser.add_argument(
"--evaluate_during_training",
action="store_true",
help="Whether to run evaluation during training at each logging step.",
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument(
"--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents."
)
parser.add_argument(
"--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents."
)
parser.add_argument("--use_fast", action="store_const", const=True, help="Set this flag to use fast tokenization.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(args)
set_seed(training_args.seed)
# Prepare CONLL-2003 task
labels = get_labels(args.labels)
labels = get_labels(data_args.labels)
label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
num_labels = len(labels)
# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
pad_token_label_id = CrossEntropyLoss().ignore_index
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
args.model_type = args.model_type.lower()
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
id2label={str(i): label for i, label in enumerate(labels)},
id2label=label_map,
label2id={label: i for i, label in enumerate(labels)},
cache_dir=args.cache_dir if args.cache_dir else None,
cache_dir=model_args.cache_dir,
)
tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS}
logger.info("Tokenizer arguments: %s", tokenizer_args)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
**tokenizer_args,
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast,
)
model = AutoModelForTokenClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
cache_dir=model_args.cache_dir,
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
# Get datasets
train_dataset = (
NerDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
labels=labels,
model_type=config.model_type,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.train,
local_rank=training_args.local_rank,
)
if training_args.do_train
else None
)
eval_dataset = (
NerDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
labels=labels,
model_type=config.model_type,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.dev,
local_rank=training_args.local_rank,
)
if training_args.do_eval
else None
)
logger.info("Training/evaluation parameters %s", args)
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
preds = np.argmax(predictions, axis=2)
batch_size, seq_len = preds.shape
out_label_list = [[] for _ in range(batch_size)]
preds_list = [[] for _ in range(batch_size)]
for i in range(batch_size):
for j in range(seq_len):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]])
preds_list[i].append(label_map[preds[i][j]])
return preds_list, out_label_list
def compute_metrics(p: EvalPrediction) -> Dict:
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
return {
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list),
}
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train")
global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = AutoTokenizer.from_pretrained(args.output_dir, **tokenizer_args)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
model = AutoModelForTokenClassification.from_pretrained(checkpoint)
model.to(args.device)
result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step)
if global_step:
result = {"{}_{}".format(global_step, k): v for k, v in result.items()}
results.update(result)
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
for key in sorted(results.keys()):
writer.write("{} = {}\n".format(key, str(results[key])))
if args.do_predict and args.local_rank in [-1, 0]:
tokenizer = AutoTokenizer.from_pretrained(args.output_dir, **tokenizer_args)
model = AutoModelForTokenClassification.from_pretrained(args.output_dir)
model.to(args.device)
result, predictions = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="test")
# Save results
output_test_results_file = os.path.join(args.output_dir, "test_results.txt")
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
# Predict
if training_args.do_predict and training_args.local_rank in [-1, 0]:
test_dataset = NerDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
labels=labels,
model_type=config.model_type,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.test,
local_rank=training_args.local_rank,
)
predictions, label_ids, metrics = trainer.predict(test_dataset)
preds_list, _ = align_predictions(predictions, label_ids)
output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
with open(output_test_results_file, "w") as writer:
for key in sorted(result.keys()):
writer.write("{} = {}\n".format(key, str(result[key])))
for key, value in metrics.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
# Save predictions
output_test_predictions_file = os.path.join(args.output_dir, "test_predictions.txt")
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
with open(output_test_predictions_file, "w") as writer:
with open(os.path.join(args.data_dir, "test.txt"), "r") as f:
with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
example_id = 0
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
writer.write(line)
if not predictions[example_id]:
if not preds_list[example_id]:
example_id += 1
elif predictions[example_id]:
output_line = line.split()[0] + " " + predictions[example_id].pop(0) + "\n"
elif preds_list[example_id]:
output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"
writer.write(output_line)
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])
......
......@@ -11,7 +11,7 @@ curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-dev.tsv?attre
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-test.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
wget "https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py"
wget "https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py"
export MAX_LENGTH=128
export BERT_MODEL=bert-base-multilingual-cased
python3 preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
......
......@@ -27,7 +27,7 @@ class NERTransformer(BaseTransformer):
self.labels = get_labels(hparams.labels)
num_labels = len(self.labels)
self.pad_token_label_id = CrossEntropyLoss().ignore_index
super(NERTransformer, self).__init__(hparams, num_labels, self.mode)
super().__init__(hparams, num_labels, self.mode)
def forward(self, **inputs):
return self.model(**inputs)
......@@ -35,10 +35,10 @@ class NERTransformer(BaseTransformer):
def training_step(self, batch, batch_num):
"Compute loss and log."
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.hparams.model_type != "distilbert":
if self.config.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if self.hparams.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use segment_ids
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
outputs = self(**inputs)
loss = outputs[0]
......@@ -58,12 +58,12 @@ class NERTransformer(BaseTransformer):
self.labels,
args.max_seq_length,
self.tokenizer,
cls_token_at_end=bool(args.model_type in ["xlnet"]),
cls_token_at_end=bool(self.config.model_type in ["xlnet"]),
cls_token=self.tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0,
sep_token=self.tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ["roberta"]),
pad_on_left=bool(args.model_type in ["xlnet"]),
sep_token_extra=bool(self.config.model_type in ["roberta"]),
pad_on_left=bool(self.config.model_type in ["xlnet"]),
pad_token=self.tokenizer.pad_token_id,
pad_token_segment_id=self.tokenizer.pad_token_type_id,
pad_token_label_id=self.pad_token_label_id,
......@@ -77,21 +77,25 @@ class NERTransformer(BaseTransformer):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
if features[0].token_type_ids is not None:
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
else:
all_token_type_ids = torch.tensor([0 for f in features], dtype=torch.long)
# HACK(we will not use this anymore soon)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
return DataLoader(
TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids), batch_size=batch_size
TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label_ids), batch_size=batch_size
)
def validation_step(self, batch, batch_nb):
"Compute validation"
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.hparams.model_type != "distilbert":
if self.config.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if self.hparams.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use segment_ids
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
outputs = self(**inputs)
tmp_eval_loss, logits = outputs[:2]
preds = logits.detach().cpu().numpy()
......
......@@ -9,6 +9,7 @@ import re
import numpy as np
import tensorflow as tf
from absl import app, flags, logging
from fastprogress import master_bar, progress_bar
from seqeval import metrics
from transformers import (
......@@ -17,34 +18,23 @@ from transformers import (
AutoConfig,
AutoTokenizer,
GradientAccumulator,
PreTrainedTokenizer,
TFAutoModelForTokenClassification,
create_optimizer,
)
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file
try:
from fastprogress import master_bar, progress_bar
except ImportError:
from fastprogress.fastprogress import master_bar, progress_bar
MODEL_CONFIG_CLASSES = list(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), (),)
flags.DEFINE_string(
"data_dir", None, "The input data dir. Should contain the .conll files (or other data files) " "for the task."
"data_dir", None, "The input data dir. Should contain the .conll files (or other data files) for the task."
)
flags.DEFINE_string("model_type", None, "Model type selected in the list: " + ", ".join(MODEL_TYPES))
flags.DEFINE_string(
"model_name_or_path",
None,
"Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
"model_name_or_path", None, "Path to pretrained model or model identifier from huggingface.co/models",
)
flags.DEFINE_string("output_dir", None, "The output directory where the model checkpoints will be written.")
......@@ -53,11 +43,11 @@ flags.DEFINE_string(
"labels", "", "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."
)
flags.DEFINE_string("config_name", "", "Pretrained config name or path if not the same as model_name")
flags.DEFINE_string("config_name", None, "Pretrained config name or path if not the same as model_name")
flags.DEFINE_string("tokenizer_name", "", "Pretrained tokenizer name or path if not the same as model_name")
flags.DEFINE_string("tokenizer_name", None, "Pretrained tokenizer name or path if not the same as model_name")
flags.DEFINE_string("cache_dir", "", "Where do you want to store the pre-trained models downloaded from s3")
flags.DEFINE_string("cache_dir", None, "Where do you want to store the pre-trained models downloaded from s3")
flags.DEFINE_integer(
"max_seq_length",
......@@ -123,7 +113,7 @@ flags.DEFINE_boolean(
"Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
flags.DEFINE_boolean("no_cuda", False, "Avoid using CUDA when available")
flags.DEFINE_boolean("no_cuda", False, "Avoid using CUDA even if it is available")
flags.DEFINE_boolean("overwrite_output_dir", False, "Overwrite the content of the output directory")
......@@ -198,12 +188,10 @@ def train(
@tf.function
def train_step(train_features, train_labels):
def step_fn(train_features, train_labels):
inputs = {"attention_mask": train_features["input_mask"], "training": True}
inputs = {"attention_mask": train_features["attention_mask"], "training": True}
if args["model_type"] != "distilbert":
inputs["token_type_ids"] = (
train_features["segment_ids"] if args["model_type"] in ["bert", "xlnet"] else None
)
if "token_type_ids" in train_features:
inputs["token_type_ids"] = train_features["token_type_ids"]
with tf.GradientTape() as tape:
logits = model(train_features["input_ids"], **inputs)[0]
......@@ -320,12 +308,10 @@ def evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode)
logging.info(" Batch size = %d", eval_batch_size)
for eval_features, eval_labels in eval_iterator:
inputs = {"attention_mask": eval_features["input_mask"], "training": False}
inputs = {"attention_mask": eval_features["attention_mask"], "training": False}
if args["model_type"] != "distilbert":
inputs["token_type_ids"] = (
eval_features["segment_ids"] if args["model_type"] in ["bert", "xlnet"] else None
)
if "token_type_ids" in eval_features:
inputs["token_type_ids"] = eval_features["token_type_ids"]
with strategy.scope():
logits = model(eval_features["input_ids"], **inputs)[0]
......@@ -356,20 +342,23 @@ def evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode)
return y_true, y_pred, loss.numpy()
def load_cache(cached_file, max_seq_length):
def load_cache(cached_file, tokenizer: PreTrainedTokenizer, max_seq_length):
name_to_features = {
"input_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
"input_mask": tf.io.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
"attention_mask": tf.io.FixedLenFeature([max_seq_length], tf.int64),
"label_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
}
# TODO Find a cleaner way to do this.
if "token_type_ids" in tokenizer.model_input_names:
name_to_features["token_type_ids"] = tf.io.FixedLenFeature([max_seq_length], tf.int64)
def _decode_record(record):
example = tf.io.parse_single_example(record, name_to_features)
features = {}
features["input_ids"] = example["input_ids"]
features["input_mask"] = example["input_mask"]
features["segment_ids"] = example["segment_ids"]
features["attention_mask"] = example["attention_mask"]
if "token_type_ids" in example:
features["token_type_ids"] = example["token_type_ids"]
return features, example["label_ids"]
......@@ -393,8 +382,9 @@ def save_cache(features, cached_features_file):
record_feature = collections.OrderedDict()
record_feature["input_ids"] = create_int_feature(feature.input_ids)
record_feature["input_mask"] = create_int_feature(feature.input_mask)
record_feature["segment_ids"] = create_int_feature(feature.segment_ids)
record_feature["attention_mask"] = create_int_feature(feature.attention_mask)
if feature.token_type_ids is not None:
record_feature["token_type_ids"] = create_int_feature(feature.token_type_ids)
record_feature["label_ids"] = create_int_feature(feature.label_ids)
tf_example = tf.train.Example(features=tf.train.Features(feature=record_feature))
......@@ -410,13 +400,11 @@ def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, batch_s
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args["data_dir"],
"cached_{}_{}_{}.tf_record".format(
mode, list(filter(None, args["model_name_or_path"].split("/"))).pop(), str(args["max_seq_length"])
),
"cached_{}_{}_{}.tf_record".format(mode, tokenizer.__class__.__name__, str(args["max_seq_length"])),
)
if os.path.exists(cached_features_file) and not args["overwrite_cache"]:
logging.info("Loading features from cached file %s", cached_features_file)
dataset, size = load_cache(cached_features_file, args["max_seq_length"])
dataset, size = load_cache(cached_features_file, tokenizer, args["max_seq_length"])
else:
logging.info("Creating features from dataset file at %s", args["data_dir"])
examples = read_examples_from_file(args["data_dir"], mode)
......@@ -440,7 +428,7 @@ def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, batch_s
)
logging.info("Saving features into cached file %s", cached_features_file)
save_cache(features, cached_features_file)
dataset, size = load_cache(cached_features_file, args["max_seq_length"])
dataset, size = load_cache(cached_features_file, tokenizer, args["max_seq_length"])
if mode == "train":
dataset = dataset.repeat()
......@@ -500,17 +488,18 @@ def main(_):
config = AutoConfig.from_pretrained(
args["config_name"] if args["config_name"] else args["model_name_or_path"],
num_labels=num_labels,
cache_dir=args["cache_dir"] if args["cache_dir"] else None,
cache_dir=args["cache_dir"],
)
logging.info("Training/evaluation parameters %s", args)
args["model_type"] = config.model_type
# Training
if args["do_train"]:
tokenizer = AutoTokenizer.from_pretrained(
args["tokenizer_name"] if args["tokenizer_name"] else args["model_name_or_path"],
do_lower_case=args["do_lower_case"],
cache_dir=args["cache_dir"] if args["cache_dir"] else None,
cache_dir=args["cache_dir"],
)
with strategy.scope():
......@@ -518,7 +507,7 @@ def main(_):
args["model_name_or_path"],
from_pt=bool(".bin" in args["model_name_or_path"]),
config=config,
cache_dir=args["cache_dir"] if args["cache_dir"] else None,
cache_dir=args["cache_dir"],
)
train_batch_size = args["per_device_train_batch_size"] * args["n_device"]
......@@ -538,8 +527,7 @@ def main(_):
pad_token_label_id,
)
if not os.path.exists(args["output_dir"]):
os.makedirs(args["output_dir"])
os.makedirs(args["output_dir"], exist_ok=True)
logging.info("Saving model to %s", args["output_dir"])
......@@ -637,5 +625,4 @@ if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("output_dir")
flags.mark_flag_as_required("model_name_or_path")
flags.mark_flag_as_required("model_type")
app.run(main)
import logging
import sys
import unittest
from unittest.mock import patch
import run_ner
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
class ExamplesTests(unittest.TestCase):
def test_run_ner(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = """
--model_name distilbert-base-german-cased
--output_dir ./examples/tests_samples/temp_dir
--overwrite_output_dir
--data_dir ./examples/tests_samples/GermEval
--labels ./examples/tests_samples/GermEval/labels.txt
--max_seq_length 128
--num_train_epochs 6
--logging_steps 1
--do_train
--do_eval
""".split()
with patch.object(sys, "argv", ["run.py"] + testargs):
result = run_ner.main()
self.assertLess(result["loss"], 1.5)
......@@ -18,40 +18,126 @@
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import torch
from torch import nn
from torch.utils.data.dataset import Dataset
from transformers import PreTrainedTokenizer, torch_distributed_zero_first
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for token classification."""
@dataclass
class InputExample:
"""
A single training/test example for token classification.
def __init__(self, guid, words, labels):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
labels: (Optional) list. The labels for each word of the sequence. This should be
specified for train and dev examples, but not for test examples.
"""
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
labels: (Optional) list. The labels for each word of the sequence. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.words = words
self.labels = labels
guid: str
words: List[str]
labels: Optional[List[str]]
class InputFeatures(object):
"""A single set of features of data."""
@dataclass
class InputFeatures:
"""
A single set of features of data.
Property names are the same names as the corresponding inputs to a model.
"""
def __init__(self, input_ids, input_mask, segment_ids, label_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
input_ids: List[int]
attention_mask: List[int]
token_type_ids: Optional[List[int]] = None
label_ids: Optional[List[int]] = None
def read_examples_from_file(data_dir, mode):
file_path = os.path.join(data_dir, "{}.txt".format(mode))
class Split(Enum):
train = "train"
dev = "dev"
test = "test"
class NerDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach
soon.
"""
features: List[InputFeatures]
pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index
# Use cross entropy ignore_index as padding label id so that only
# real label ids contribute to the loss later.
def __init__(
self,
data_dir: str,
tokenizer: PreTrainedTokenizer,
labels: List[str],
model_type: str,
max_seq_length: Optional[int] = None,
overwrite_cache=False,
mode: Split = Split.train,
local_rank=-1,
):
# Load data features from cache or dataset file
cached_features_file = os.path.join(
data_dir, "cached_{}_{}_{}".format(mode.value, tokenizer.__class__.__name__, str(max_seq_length)),
)
with torch_distributed_zero_first(local_rank):
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
if os.path.exists(cached_features_file) and not overwrite_cache:
logger.info(f"Loading features from cached file {cached_features_file}")
self.features = torch.load(cached_features_file)
else:
logger.info(f"Creating features from dataset file at {data_dir}")
examples = read_examples_from_file(data_dir, mode)
# TODO clean up all this to leverage built-in features of tokenizers
self.features = convert_examples_to_features(
examples,
labels,
max_seq_length,
tokenizer,
cls_token_at_end=bool(model_type in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(model_type in ["roberta"]),
# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(tokenizer.padding_side == "left"),
pad_token=tokenizer.pad_token_id,
pad_token_segment_id=tokenizer.pad_token_type_id,
pad_token_label_id=self.pad_token_label_id,
)
if local_rank in [-1, 0]:
logger.info(f"Saving features into cached file {cached_features_file}")
torch.save(self.features, cached_features_file)
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> InputFeatures:
return self.features[i]
def read_examples_from_file(data_dir, mode: Union[Split, str]) -> List[InputExample]:
if isinstance(mode, Split):
mode = mode.value
file_path = os.path.join(data_dir, f"{mode}.txt")
guid_index = 1
examples = []
with open(file_path, encoding="utf-8") as f:
......@@ -60,7 +146,7 @@ def read_examples_from_file(data_dir, mode):
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
examples.append(InputExample(guid="{}-{}".format(mode, guid_index), words=words, labels=labels))
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
guid_index += 1
words = []
labels = []
......@@ -73,15 +159,15 @@ def read_examples_from_file(data_dir, mode):
# Examples could have no label for mode = "test"
labels.append("O")
if words:
examples.append(InputExample(guid="{}-{}".format(mode, guid_index), words=words, labels=labels))
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
return examples
def convert_examples_to_features(
examples,
label_list,
max_seq_length,
tokenizer,
examples: List[InputExample],
label_list: List[str],
max_seq_length: int,
tokenizer: PreTrainedTokenizer,
cls_token_at_end=False,
cls_token="[CLS]",
cls_token_segment_id=1,
......@@ -93,19 +179,20 @@ def convert_examples_to_features(
pad_token_label_id=-100,
sequence_a_segment_id=0,
mask_padding_with_zero=True,
):
""" Loads a data file into a list of `InputBatch`s
) -> List[InputFeatures]:
""" Loads a data file into a list of `InputFeatures`
`cls_token_at_end` define the location of the CLS token:
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
"""
# TODO clean up all this to leverage built-in features of tokenizers
label_map = {label: i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
if ex_index % 10_000 == 0:
logger.info("Writing example %d of %d", ex_index, len(examples))
tokens = []
......@@ -120,7 +207,7 @@ def convert_examples_to_features(
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1))
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
special_tokens_count = tokenizer.num_added_tokens()
special_tokens_count = tokenizer.num_special_tokens_to_add()
if len(tokens) > max_seq_length - special_tokens_count:
tokens = tokens[: (max_seq_length - special_tokens_count)]
label_ids = label_ids[: (max_seq_length - special_tokens_count)]
......@@ -193,13 +280,18 @@ def convert_examples_to_features(
logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
logger.info("label_ids: %s", " ".join([str(x) for x in label_ids]))
if "token_type_ids" not in tokenizer.model_input_names:
segment_ids = None
features.append(
InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids)
InputFeatures(
input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids, label_ids=label_ids
)
)
return features
def get_labels(path):
def get_labels(path: str) -> List[str]:
if path:
with open(path, "r") as f:
labels = f.read().splitlines()
......
......@@ -16,369 +16,33 @@
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
import argparse
import glob
import json
import dataclasses
import logging
import os
import random
from dataclasses import dataclass, field
from typing import Optional
from typing import Dict, Optional
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
EvalPrediction,
GlueDataset,
GlueDataTrainingArguments,
HfArgumentParser,
Trainer,
TrainingArguments,
get_linear_schedule_with_warmup,
glue_compute_metrics,
glue_output_modes,
glue_tasks_num_labels,
set_seed,
)
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), (),)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True,
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to global_step of last saved checkpoint from model path
try:
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
except ValueError:
global_step = 0
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0],
)
set_seed(args) # Added here for reproducibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
len(epoch_iterator) <= args.gradient_accumulation_steps
and (step + 1) == len(epoch_iterator)
):
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logs = {}
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
for key, value in logs.items():
tb_writer.add_scalar(key, value, global_step)
print(json.dumps({**logs, **{"step": global_step}}))
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
str(task),
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = (
processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
)
features = convert_examples_to_features(
examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, output_mode=output_mode,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
elif output_mode == "regression":
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
return dataset
@dataclass
class ModelArguments:
......@@ -387,9 +51,8 @@ class ModelArguments:
"""
model_name_or_path: str = field(
metadata={"help": "Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)}
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_type: str = field(metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)})
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
......@@ -397,162 +60,136 @@ class ModelArguments:
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pre-trained models downloaded from s3"}
)
@dataclass
class DataProcessingArguments:
task_name: str = field(
metadata={"help": "The name of the task to train selected in the list: " + ", ".join(processors.keys())}
)
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
def main():
parser = HfArgumentParser((ModelArguments, DataProcessingArguments, TrainingArguments))
model_args, dataprocessing_args, training_args = parser.parse_args_into_dataclasses()
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
# For now, let's merge all the sets of args into one,
# but soon, we'll keep distinct sets of args, with a cleaner separation of concerns.
args = argparse.Namespace(**vars(model_args), **vars(dataprocessing_args), **vars(training_args))
parser = HfArgumentParser((ModelArguments, GlueDataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(args)
set_seed(training_args.seed)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
try:
num_labels = glue_tasks_num_labels[data_args.task_name]
output_mode = glue_output_modes[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
args.model_type = args.model_type.lower()
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, cache_dir=args.cache_dir,
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=args.cache_dir,
cache_dir=model_args.cache_dir,
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Get datasets
train_dataset = (
GlueDataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank)
if training_args.do_train
else None
)
eval_dataset = (
GlueDataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank, evaluate=True)
if training_args.do_eval
else None
)
model.to(args.device)
def compute_metrics(p: EvalPrediction) -> Dict:
if output_mode == "classification":
preds = np.argmax(p.predictions, axis=1)
elif output_mode == "regression":
preds = np.squeeze(p.predictions)
return glue_compute_metrics(data_args.task_name, preds, p.label_ids)
logger.info("Training/evaluation parameters %s", args)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = AutoModelForSequenceClassification.from_pretrained(args.output_dir)
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
eval_datasets.append(
GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, local_rank=training_args.local_rank, evaluate=True)
)
for eval_dataset in eval_datasets:
result = trainer.evaluate(eval_dataset=eval_dataset)
output_eval_file = os.path.join(
training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt"
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(eval_dataset.args.task_name))
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
......
......@@ -20,42 +20,29 @@ using a masked language modeling (MLM) loss.
"""
import argparse
import glob
import logging
import math
import os
import pickle
import random
import re
import shutil
from typing import Dict, List, Tuple
import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from dataclasses import dataclass, field
from typing import Optional
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
PreTrainedModel,
DataCollatorForLanguageModeling,
HfArgumentParser,
LineByLineTextDataset,
PreTrainedTokenizer,
get_linear_schedule_with_warmup,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
......@@ -63,722 +50,228 @@ MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
class TextDataset(Dataset):
def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
assert os.path.isfile(file_path)
block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(
directory, args.model_type + "_cached_lm_" + str(block_size) + "_" + filename
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle)
else:
logger.info("Creating features from dataset file at %s", directory)
self.examples = []
with open(file_path, encoding="utf-8") as f:
text = f.read()
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size
self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]))
# Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
# If your dataset is small, first you should loook for a bigger one :-) and second you
# can change this behavior by adding (model specific) padding.
logger.info("Saving features into cached file %s", cached_features_file)
with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return torch.tensor(self.examples[item], dtype=torch.long)
class LineByLineTextDataset(Dataset):
def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
assert os.path.isfile(file_path)
# Here, we do not cache the features, operating under the assumption
# that we will soon use fast multithreaded tokenizers from the
# `tokenizers` repo everywhere =)
logger.info("Creating features from dataset file at %s", file_path)
with open(file_path, encoding="utf-8") as f:
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
self.examples = tokenizer.batch_encode_plus(lines, add_special_tokens=True, max_length=block_size)["input_ids"]
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
return torch.tensor(self.examples[i], dtype=torch.long)
def load_and_cache_examples(args, tokenizer, evaluate=False):
file_path = args.eval_data_file if evaluate else args.train_data_file
if args.line_by_line:
return LineByLineTextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
else:
return TextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
ordering_and_checkpoint_path = []
glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
if not args.save_total_limit:
return
if args.save_total_limit <= 0:
return
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
# Check if we should delete older checkpoint(s)
checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)
if len(checkpoints_sorted) <= args.save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
def mask_tokens(inputs: torch.Tensor, tokenizer: PreTrainedTokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]:
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
if tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer."
)
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, args.mlm_probability)
special_tokens_mask = [
tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
if tokenizer._pad_token is not None:
padding_mask = labels.eq(tokenizer.pad_token_id)
probability_matrix.masked_fill_(padding_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
def collate(examples: List[torch.Tensor]):
if tokenizer._pad_token is None:
return pad_sequence(examples, batch_first=True)
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate
)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
model = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training
model.resize_token_embeddings(len(tokenizer))
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if (
args.model_name_or_path
and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if args.model_name_or_path and os.path.exists(args.model_name_or_path):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
set_seed(args) # Added here for reproducibility
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
if args.local_rank != -1:
train_sampler.set_epoch(epoch)
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
model.train()
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
checkpoint_prefix = "checkpoint"
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
os.makedirs(output_dir, exist_ok=True)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
_rotate_checkpoints(args, checkpoint_prefix)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix="") -> Dict:
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
if args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir, exist_ok=True)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
def collate(examples: List[torch.Tensor]):
if tokenizer._pad_token is None:
return pad_sequence(examples, batch_first=True)
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
# multi-gpu evaluate
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
with torch.no_grad():
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
lm_loss = outputs[0]
eval_loss += lm_loss.mean().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.exp(torch.tensor(eval_loss))
result = {"perplexity": perplexity}
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main():
parser = argparse.ArgumentParser()
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
# Required parameters
parser.add_argument(
"--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file)."
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
train_data_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a text file)."}
)
parser.add_argument(
"--model_type", type=str, required=True, help="The model architecture to be trained or fine-tuned.",
)
# Other parameters
parser.add_argument(
"--eval_data_file",
eval_data_file: Optional[str] = field(
default=None,
type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).",
)
parser.add_argument(
"--line_by_line",
action="store_true",
help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
)
parser.add_argument(
"--should_continue", action="store_true", help="Whether to continue from latest checkpoint in output_dir"
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.",
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
parser.add_argument(
"--mlm", action="store_true", help="Train with masked-language modeling loss instead of language modeling."
mlm: bool = field(
default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
)
parser.add_argument(
"--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
parser.add_argument(
"--config_name",
default=None,
type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.",
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path. If both are None, initialize a new tokenizer.",
)
parser.add_argument(
"--cache_dir",
default=None,
type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instead of the default one)",
)
parser.add_argument(
"--block_size",
block_size: int = field(
default=-1,
type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).",
metadata={
"help": "Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
},
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--save_total_limit",
type=int,
default=None,
help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default",
)
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
def get_dataset(args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate=False, local_rank=-1):
file_path = args.eval_data_file if evaluate else args.train_data_file
if args.line_by_line:
return LineByLineTextDataset(
tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, local_rank=local_rank
)
else:
return TextDataset(
tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, local_rank=local_rank,
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
raise ValueError(
"BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
"flag (masked language modeling)."
)
if args.eval_data_file is None and args.do_eval:
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument."
)
if args.should_continue:
sorted_checkpoints = _sorted_checkpoints(args)
if len(sorted_checkpoints) == 0:
raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
else:
args.model_name_or_path = sorted_checkpoints[-1]
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
and not args.should_continue
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(args)
set_seed(training_args.seed)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
else:
# When we release a pip version exposing CONFIG_MAPPING,
# we can do `config = CONFIG_MAPPING[args.model_type]()`.
raise ValueError(
"You are instantiating a new config instance from scratch. This is not supported, but you can do it from another script, save it,"
"and load it from here, using --config_name"
)
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
"and load it from here, using --tokenizer_name"
)
if args.block_size <= 0:
args.block_size = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
args.block_size = min(args.block_size, tokenizer.max_len)
if args.model_name_or_path:
if model_args.model_name_or_path:
model = AutoModelWithLMHead.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=args.cache_dir,
cache_dir=model_args.cache_dir,
)
else:
logger.info("Training new model from scratch")
model = AutoModelWithLMHead.from_config(config)
model.to(args.device)
if args.local_rank == 0:
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
model.resize_token_embeddings(len(tokenizer))
logger.info("Training/evaluation parameters %s", args)
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
"flag (masked language modeling)."
)
# Training
if args.do_train:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
if data_args.block_size <= 0:
data_args.block_size = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
data_args.block_size = min(data_args.block_size, tokenizer.max_len)
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
# Get datasets
train_dataset = (
get_dataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank)
if training_args.do_train
else None
)
eval_dataset = (
get_dataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank, evaluate=True)
if training_args.do_eval
else None
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
)
if args.local_rank == 0:
torch.distributed.barrier()
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
prediction_loss_only=True,
)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Training
if training_args.do_train:
model_path = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
else None
)
trainer.train(model_path=model_path)
trainer.save_model()
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if args.local_rank in [-1, 0]:
os.makedirs(args.output_dir, exist_ok=True)
# Evaluation
results = {}
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
eval_output = trainer.evaluate()
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
perplexity = math.exp(eval_output["loss"])
result = {"perplexity": perplexity}
# Load a trained model and vocabulary that you have fine-tuned
model = AutoModelWithLMHead.from_pretrained(args.output_dir)
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = AutoModelWithLMHead.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
results.update(result)
return results
......
......@@ -16,662 +16,203 @@
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
import argparse
import glob
import logging
import os
import random
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (
WEIGHTS_NAME,
AdamW,
BertConfig,
BertForMultipleChoice,
BertTokenizer,
RobertaConfig,
RobertaForMultipleChoice,
RobertaTokenizer,
XLNetConfig,
XLNetForMultipleChoice,
XLNetTokenizer,
get_linear_schedule_with_warmup,
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from utils_multiple_choice import convert_examples_to_features, processors
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
logger = logging.getLogger(__name__)
ALL_MODELS = sum(
(tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, RobertaConfig)), ()
)
MODEL_CLASSES = {
"bert": (BertConfig, BertForMultipleChoice, BertTokenizer),
"xlnet": (XLNetConfig, XLNetForMultipleChoice, XLNetTokenizer),
"roberta": (RobertaConfig, RobertaForMultipleChoice, RobertaTokenizer),
}
def select_field(features, field):
return [[choice[field] for choice in feature.choices_features] for feature in features]
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
best_dev_acc = 0.0
best_steps = 0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2]
if args.model_type in ["bert", "xlnet"]
else None, # XLM don't use segment_ids
"labels": batch[3],
}
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
if results["eval_acc"] > best_dev_acc:
best_dev_acc = results["eval_acc"]
best_steps = global_step
if args.do_test:
results_test = evaluate(args, model, tokenizer, test=True)
for key, value in results_test.items():
tb_writer.add_scalar("test_{}".format(key), value, global_step)
logger.info(
"test acc: %s, loss: %s, global steps: %s",
str(results_test["eval_acc"]),
str(results_test["eval_loss"]),
str(global_step),
)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logger.info(
"Average loss: %s at global step: %s",
str((tr_loss - logging_loss) / args.logging_steps),
str(global_step),
)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_vocabulary(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step, best_steps
def evaluate(args, model, tokenizer, prefix="", test=False):
eval_task_names = (args.task_name,)
eval_outputs_dirs = (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=not test, test=test)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2]
if args.model_type in ["bert", "xlnet"]
else None, # XLM don't use segment_ids
"labels": batch[3],
}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=1)
acc = simple_accuracy(preds, out_label_ids)
result = {"eval_acc": acc, "eval_loss": eval_loss}
results.update(result)
output_eval_file = os.path.join(eval_output_dir, "is_test_" + str(test).lower() + "_eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(str(prefix) + " is test:" + str(test)))
writer.write("model =%s\n" % str(args.model_name_or_path))
writer.write(
"total batch size=%d\n"
% (
args.per_gpu_train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1)
)
)
writer.write("train num epochs=%d\n" % args.num_train_epochs)
writer.write("fp16 =%s\n" % args.fp16)
writer.write("max seq length =%d\n" % args.max_seq_length)
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False, test=False):
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
# Load data features from cache or dataset file
if evaluate:
cached_mode = "dev"
elif test:
cached_mode = "test"
else:
cached_mode = "train"
assert not (evaluate and test)
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}_{}".format(
cached_mode,
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
str(task),
),
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if evaluate:
examples = processor.get_dev_examples(args.data_dir)
elif test:
examples = processor.get_test_examples(args.data_dir)
else:
examples = processor.get_train_examples(args.data_dir)
logger.info("Training number: %s", str(len(examples)))
features = convert_examples_to_features(
examples,
label_list,
args.max_seq_length,
tokenizer,
pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet
pad_token=tokenizer.pad_token_id,
pad_token_segment_id=tokenizer.pad_token_type_id,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
all_label_ids = torch.tensor([f.label for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
)
parser.add_argument(
"--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--max_seq_length",
task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())})
data_dir: str = field(metadata={"help": "Should contain the data files for the task."})
max_seq_length: int = field(
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action="store_true", help="Whether to run test on the test set")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(args)
set_seed(training_args.seed)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
try:
processor = processors[data_args.task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
model = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.train,
local_rank=training_args.local_rank,
)
if training_args.do_train
else None
)
eval_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.dev,
local_rank=training_args.local_rank,
)
if training_args.do_eval
else None
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
def compute_metrics(p: EvalPrediction) -> Dict:
preds = np.argmax(p.predictions, axis=1)
return {"acc": simple_accuracy(preds, p.label_ids)}
logger.info("Training/evaluation parameters %s", args)
best_steps = 0
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss, best_steps = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if not args.do_train:
args.output_dir = args.model_name_or_path
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
if args.do_test and args.local_rank in [-1, 0]:
if not args.do_train:
args.output_dir = args.model_name_or_path
checkpoints = [args.output_dir]
# if args.eval_all_checkpoints: # can not use this to do test!!
# checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
# logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix, test=True)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
if best_steps:
logger.info("best steps of eval acc is the following checkpoints: %s", best_steps)
return results
......
......@@ -159,7 +159,7 @@ def main(args):
# If output_dir not provided, a folder will be generated in pwd
if not args.output_dir:
args.output_dir = os.path.join("./results", f"{args.task}_{args.model_type}_{time.strftime('%Y%m%d_%H%M%S')}",)
args.output_dir = os.path.join("./results", f"{args.task}_{time.strftime('%Y%m%d_%H%M%S')}",)
os.makedirs(args.output_dir)
model = SummarizationTrainer(args)
trainer = generic_train(model, args)
......
......@@ -10,7 +10,6 @@ export PYTHONPATH="../../":"${PYTHONPATH}"
python finetune.py \
--data_dir=./cnn-dailymail/cnn_dm \
--model_type=bart \
--model_name_or_path=bart-large \
--learning_rate=3e-5 \
--train_batch_size=4 \
......
......@@ -22,6 +22,7 @@ from unittest.mock import patch
import run_generation
import run_glue
import run_language_modeling
import run_squad
......@@ -56,13 +57,38 @@ class ExamplesTests(unittest.TestCase):
"--warmup_steps=2",
"--overwrite_output_dir",
"--seed=42",
"--max_seq_length=128",
]
model_type, model_name = ("--model_type=bert", "--model_name_or_path=bert-base-uncased")
with patch.object(sys, "argv", testargs + [model_type, model_name]):
model_name = "--model_name_or_path=bert-base-uncased"
with patch.object(sys, "argv", testargs + [model_name]):
result = run_glue.main()
del result["loss"]
for value in result.values():
self.assertGreaterEqual(value, 0.75)
def test_run_language_modeling(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = """
run_language_modeling.py
--model_name_or_path distilroberta-base
--model_type roberta
--mlm
--line_by_line
--train_data_file ./tests/fixtures/sample_text.txt
--eval_data_file ./tests/fixtures/sample_text.txt
--output_dir ./tests/fixtures
--overwrite_output_dir
--do_train
--do_eval
--num_train_epochs=1
--no_cuda
""".split()
with patch.object(sys, "argv", testargs):
result = run_language_modeling.main()
self.assertLess(result["perplexity"], 35)
def test_run_squad(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
......
*.*
cache*
temp*
!*.txt
!*.tsv
!*.json
!.gitignore
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment