"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "c824d7ed484b13047c9a3c853f7962bf29fa8a18"
Unverified Commit db136341 authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

TF: GPT2 with native embedding layers (#23436)

parent c618ab4f
...@@ -54,9 +54,6 @@ Most of those are only useful if you are studying the code of the models in the ...@@ -54,9 +54,6 @@ Most of those are only useful if you are studying the code of the models in the
[[autodoc]] modeling_tf_utils.TFConv1D [[autodoc]] modeling_tf_utils.TFConv1D
[[autodoc]] modeling_tf_utils.TFSharedEmbeddings
- call
[[autodoc]] modeling_tf_utils.TFSequenceSummary [[autodoc]] modeling_tf_utils.TFSequenceSummary
## TensorFlow loss functions ## TensorFlow loss functions
......
...@@ -3132,6 +3132,10 @@ class TFSharedEmbeddings(tf.keras.layers.Layer): ...@@ -3132,6 +3132,10 @@ class TFSharedEmbeddings(tf.keras.layers.Layer):
self.vocab_size = vocab_size self.vocab_size = vocab_size
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.initializer_range = hidden_size**-0.5 if initializer_range is None else initializer_range self.initializer_range = hidden_size**-0.5 if initializer_range is None else initializer_range
warnings.warn(
"`TFSharedEmbeddings` is scheduled for deletion in v4.32, use `tf.keras.layers.Embedding` instead.",
DeprecationWarning,
)
def build(self, input_shape): def build(self, input_shape):
""" """
......
...@@ -34,7 +34,6 @@ from ...modeling_tf_utils import ( ...@@ -34,7 +34,6 @@ from ...modeling_tf_utils import (
TFPreTrainedModel, TFPreTrainedModel,
TFSequenceClassificationLoss, TFSequenceClassificationLoss,
TFSequenceSummary, TFSequenceSummary,
TFSharedEmbeddings,
get_initializer, get_initializer,
keras_serializable, keras_serializable,
unpack_inputs, unpack_inputs,
...@@ -315,29 +314,27 @@ class TFGPT2MainLayer(tf.keras.layers.Layer): ...@@ -315,29 +314,27 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
self.n_positions = config.n_positions self.n_positions = config.n_positions
self.initializer_range = config.initializer_range self.initializer_range = config.initializer_range
self.wte = TFSharedEmbeddings( self.wte = tf.keras.layers.Embedding(
config.vocab_size, config.hidden_size, initializer_range=config.initializer_range, name="wte" input_dim=config.vocab_size,
output_dim=config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="wte",
)
self.wpe = tf.keras.layers.Embedding(
input_dim=config.n_positions,
output_dim=config.n_embd,
embeddings_initializer=get_initializer(config.initializer_range),
name="wpe",
) )
self.drop = tf.keras.layers.Dropout(config.embd_pdrop) self.drop = tf.keras.layers.Dropout(config.embd_pdrop)
self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)] self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f") self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f")
def build(self, input_shape):
with tf.name_scope("wpe"):
self.wpe = self.add_weight(
name="embeddings",
shape=[self.n_positions, self.n_embd],
initializer=get_initializer(self.initializer_range),
)
super().build(input_shape)
def get_input_embeddings(self): def get_input_embeddings(self):
return self.wte return self.wte
def set_input_embeddings(self, value): def set_input_embeddings(self, new_embeddings):
self.wte.weight = value self.wte = new_embeddings
self.wte.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune): def _prune_heads(self, heads_to_prune):
""" """
...@@ -438,13 +435,13 @@ class TFGPT2MainLayer(tf.keras.layers.Layer): ...@@ -438,13 +435,13 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
if inputs_embeds is None: if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size) check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = self.wte(input_ids, mode="embedding") inputs_embeds = self.wte(input_ids)
position_embeds = tf.gather(self.wpe, position_ids) position_embeds = self.wpe(position_ids)
if token_type_ids is not None: if token_type_ids is not None:
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]]) token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
token_type_embeds = self.wte(token_type_ids, mode="embedding") token_type_embeds = self.wte(token_type_ids)
else: else:
token_type_embeds = tf.constant(0.0) token_type_embeds = tf.constant(0.0)
...@@ -904,7 +901,7 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel, TFCausalLanguageModelingLoss): ...@@ -904,7 +901,7 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel, TFCausalLanguageModelingLoss):
training=training, training=training,
) )
hidden_states = transformer_outputs[0] hidden_states = transformer_outputs[0]
logits = self.transformer.wte(hidden_states, mode="linear") logits = tf.matmul(hidden_states, self.transformer.wte.weights, transpose_b=True)
loss = None loss = None
if labels is not None: if labels is not None:
...@@ -1048,7 +1045,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel): ...@@ -1048,7 +1045,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,) all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,)
else: else:
all_hidden_states = None all_hidden_states = None
lm_logits = self.transformer.wte(hidden_states, mode="linear") lm_logits = tf.matmul(hidden_states, self.transformer.wte.weights, transpose_b=True)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training)
mc_logits = tf.squeeze(mc_logits, axis=-1) mc_logits = tf.squeeze(mc_logits, axis=-1)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment