Commit daf8bebc authored by Aymeric Augustin's avatar Aymeric Augustin
Browse files

Remove unused GPTModelTester.

It isn't imported anywhere.
parent 345c23a6
......@@ -27,7 +27,7 @@ import uuid
from transformers import is_torch_available
from .utils import CACHE_DIR, require_torch, slow, torch_device
from .utils import require_torch, slow, torch_device
if is_torch_available():
......@@ -612,196 +612,6 @@ class ModelTesterMixin:
outputs = model(**inputs_dict)
class GPTModelTester(ModelTesterMixin):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_position_ids=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
n_positions=33,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
n_choices=3,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None,
config_class=None,
base_model_class=None,
lm_head_model_class=None,
double_head_model_class=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_position_ids = use_position_ids
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_positions = n_positions
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_choices = n_choices
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
self.config_class = config_class
self.base_model_class = base_model_class
self.lm_head_model_class = lm_head_model_class
self.double_head_model_class = double_head_model_class
self.all_model_classes = (base_model_class, lm_head_model_class, double_head_model_class)
def prepare_config_and_inputs(self):
total_num_tokens = self.vocab_size
input_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_num_tokens)
position_ids = None
if self.use_position_ids:
position_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)
token_type_ids = None
if self.use_token_type_ids:
total_voc = self.vocab_size
token_type_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)
mc_labels = None
lm_labels = None
mc_token_ids = None
if self.use_labels:
mc_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
lm_labels = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
mc_token_ids = ids_tensor([self.batch_size, self.n_choices], self.seq_length)
config = self.config_class(
vocab_size=self.vocab_size,
n_positions=self.n_positions,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
initializer_range=self.initializer_range,
)
return (config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids)
def create_and_check_base_model(
self, config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids
):
model = self.base_model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(input_ids, position_ids, token_type_ids)
outputs = model(input_ids, position_ids)
outputs = model(input_ids)
hidden_state = outputs[0]
self.parent.assertListEqual(
list(hidden_state.size()), [self.batch_size, self.n_choices, self.seq_length, self.hidden_size]
)
def create_and_check_lm_head(
self, config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids
):
model = self.lm_head_model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(input_ids, position_ids, token_type_ids, lm_labels)
loss, lm_logits = outputs[:2]
total_voc = self.vocab_size
self.parent.assertListEqual(
list(lm_logits.size()), [self.batch_size, self.n_choices, self.seq_length, total_voc]
)
self.parent.assertListEqual(list(loss.size()), [])
def create_and_check_presents(
self, config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids
):
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(input_ids)
presents = outputs[-1]
self.parent.assertEqual(self.num_hidden_layers, len(presents))
self.parent.assertListEqual(
list(presents[0].size()),
[
2,
self.batch_size * self.n_choices,
self.num_attention_heads,
self.seq_length,
self.hidden_size // self.num_attention_heads,
],
)
def create_and_check_double_heads(
self, config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids
):
model = self.double_head_model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(
input_ids,
mc_token_ids,
lm_labels=lm_labels,
mc_labels=mc_labels,
token_type_ids=token_type_ids,
position_ids=position_ids,
)
lm_loss, mc_loss, lm_logits, mc_logits = outputs[:4]
loss = [lm_loss, mc_loss]
total_voc = self.vocab_size
self.parent.assertListEqual(
list(lm_logits.size()), [self.batch_size, self.n_choices, self.seq_length, total_voc]
)
self.parent.assertListEqual(list(mc_logits.size()), [self.batch_size, self.n_choices])
self.parent.assertListEqual([list(l.size()) for l in loss], [[], []])
def create_and_check_model_from_pretrained(self):
for model_name in list(self.base_model_class.pretrained_model_archive_map.keys())[:1]:
model = self.base_model_class.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.parent.assertIsNotNone(model)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids) = config_and_inputs
inputs_dict = {"input_ids": input_ids}
return config, inputs_dict
def run_common_tests(self, test_presents=False):
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_base_model(*config_and_inputs)
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_lm_head(*config_and_inputs)
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_double_heads(*config_and_inputs)
if test_presents:
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_presents(*config_and_inputs)
@slow
def run_slow_tests(self):
self.create_and_check_model_from_pretrained()
class ConfigTester(object):
def __init__(self, parent, config_class=None, **kwargs):
self.parent = parent
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment