Unverified Commit da79b180 authored by Sai-Suraj-27's avatar Sai-Suraj-27 Committed by GitHub
Browse files

fix: Removed `duplicate` field definitions in some classes (#31888)

Removed duplicate field definitions in classes.
parent 9d98706b
......@@ -225,9 +225,6 @@ class DataTrainingArguments:
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
......
......@@ -163,9 +163,6 @@ class DataTrainingArguments:
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
......
......@@ -156,9 +156,6 @@ class DataTrainingArguments:
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
......
......@@ -1080,7 +1080,6 @@ class DeformableDetrPreTrainedModel(PreTrainedModel):
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = [r"DeformableDetrConvEncoder", r"DeformableDetrEncoderLayer", r"DeformableDetrDecoderLayer"]
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
......
......@@ -126,7 +126,6 @@ class VideoLlavaPreTrainedModel(PreTrainedModel):
_no_split_modules = ["VideoLlavaVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_no_split_modules = ["VideoLlavaVisionAttention"]
def _init_weights(self, module):
std = (
......
......@@ -295,7 +295,6 @@ class FNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
# Skip Tests
test_pruning = False
test_head_masking = False
test_pruning = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
......
......@@ -258,7 +258,6 @@ class MambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixi
test_model_parallel = False
test_pruning = False
test_head_masking = False # Mamba does not have attention heads
test_model_parallel = False
pipeline_model_mapping = (
{"feature-extraction": MambaModel, "text-generation": MambaForCausalLM} if is_torch_available() else {}
)
......
......@@ -298,7 +298,6 @@ class RecurrentGemmaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineT
test_model_parallel = False
test_pruning = False
test_head_masking = False # RecurrentGemma does not have attention heads
test_model_parallel = False
# Need to remove 0.9 in `test_cpu_offload`
# This is because we are hitting edge cases with the causal_mask buffer
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment