Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d996024a
Unverified
Commit
d996024a
authored
Feb 02, 2021
by
Sylvain Gugger
Committed by
GitHub
Feb 02, 2021
Browse files
Use compute_loss in prediction_step (#9935)
parent
aa438a42
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
15 deletions
+15
-15
src/transformers/trainer.py
src/transformers/trainer.py
+15
-15
No files found.
src/transformers/trainer.py
View file @
d996024a
...
@@ -1312,7 +1312,7 @@ class Trainer:
...
@@ -1312,7 +1312,7 @@ class Trainer:
return
loss
.
detach
()
return
loss
.
detach
()
def
compute_loss
(
self
,
model
,
inputs
):
def
compute_loss
(
self
,
model
,
inputs
,
return_outputs
=
False
):
"""
"""
How the loss is computed by Trainer. By default, all models return the loss in the first element.
How the loss is computed by Trainer. By default, all models return the loss in the first element.
...
@@ -1329,10 +1329,12 @@ class Trainer:
...
@@ -1329,10 +1329,12 @@ class Trainer:
self
.
_past
=
outputs
[
self
.
args
.
past_index
]
self
.
_past
=
outputs
[
self
.
args
.
past_index
]
if
labels
is
not
None
:
if
labels
is
not
None
:
return
self
.
label_smoother
(
outputs
,
labels
)
loss
=
self
.
label_smoother
(
outputs
,
labels
)
else
:
else
:
# We don't use .loss here since the model may return tuples instead of ModelOutput.
# We don't use .loss here since the model may return tuples instead of ModelOutput.
return
outputs
[
"loss"
]
if
isinstance
(
outputs
,
dict
)
else
outputs
[
0
]
loss
=
outputs
[
"loss"
]
if
isinstance
(
outputs
,
dict
)
else
outputs
[
0
]
return
(
loss
,
outputs
)
if
return_outputs
else
loss
def
is_local_process_zero
(
self
)
->
bool
:
def
is_local_process_zero
(
self
)
->
bool
:
"""
"""
...
@@ -1718,29 +1720,27 @@ class Trainer:
...
@@ -1718,29 +1720,27 @@ class Trainer:
ignore_keys
=
[]
ignore_keys
=
[]
with
torch
.
no_grad
():
with
torch
.
no_grad
():
if
self
.
use_amp
:
with
autocast
():
outputs
=
model
(
**
inputs
)
else
:
outputs
=
model
(
**
inputs
)
if
has_labels
:
if
has_labels
:
if
self
.
label_smoother
is
not
None
and
"labels"
in
inputs
:
loss
,
outputs
=
self
.
compute_loss
(
model
,
inputs
,
return_outputs
=
True
)
loss
=
self
.
label_smoother
(
outputs
,
inputs
[
"labels"
]).
mean
().
detach
()
loss
=
loss
.
mean
().
detach
()
else
:
loss
=
(
outputs
[
"loss"
]
if
isinstance
(
outputs
,
dict
)
else
outputs
[
0
]).
mean
().
detach
()
if
isinstance
(
outputs
,
dict
):
if
isinstance
(
outputs
,
dict
):
logits
=
tuple
(
v
for
k
,
v
in
outputs
.
items
()
if
k
not
in
ignore_keys
+
[
"loss"
])
logits
=
tuple
(
v
for
k
,
v
in
outputs
.
items
()
if
k
not
in
ignore_keys
+
[
"loss"
])
else
:
else
:
logits
=
outputs
[
1
:]
logits
=
outputs
[
1
:]
else
:
else
:
loss
=
None
loss
=
None
if
self
.
use_amp
:
with
autocast
():
outputs
=
model
(
**
inputs
)
else
:
outputs
=
model
(
**
inputs
)
if
isinstance
(
outputs
,
dict
):
if
isinstance
(
outputs
,
dict
):
logits
=
tuple
(
v
for
k
,
v
in
outputs
.
items
()
if
k
not
in
ignore_keys
)
logits
=
tuple
(
v
for
k
,
v
in
outputs
.
items
()
if
k
not
in
ignore_keys
)
else
:
else
:
logits
=
outputs
logits
=
outputs
# TODO: this needs to be fixed and made cleaner later.
# TODO: this needs to be fixed and made cleaner later.
if
self
.
args
.
past_index
>=
0
:
if
self
.
args
.
past_index
>=
0
:
self
.
_past
=
outputs
[
self
.
args
.
past_index
if
has_labels
else
self
.
args
.
past_index
-
1
]
self
.
_past
=
outputs
[
self
.
args
.
past_index
-
1
]
if
prediction_loss_only
:
if
prediction_loss_only
:
return
(
loss
,
None
,
None
)
return
(
loss
,
None
,
None
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment