Unverified Commit d90a36d1 authored by Atharva Ingle's avatar Atharva Ingle Committed by GitHub
Browse files

remove check for main process for trackers initialization (#18706)

parent 0f257a87
......@@ -414,14 +414,12 @@ def main():
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("image_classification_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("image_classification_no_trainer", experiment_config)
# Get the metric function
metric = evaluate.load("accuracy")
......
......@@ -516,14 +516,12 @@ def main():
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("clm_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("clm_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
......
......@@ -560,14 +560,12 @@ def main():
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("mlm_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("mlm_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
......
......@@ -513,14 +513,12 @@ def main():
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("swag_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("swag_no_trainer", experiment_config)
# Metrics
metric = evaluate.load("accuracy")
......
......@@ -787,14 +787,12 @@ def main():
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("qa_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("qa_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
......
......@@ -512,14 +512,12 @@ def main():
metric = evaluate.load("mean_iou")
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("semantic_segmentation_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("semantic_segmentation_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
......
......@@ -581,14 +581,12 @@ def main():
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("summarization_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("summarization_no_trainer", experiment_config)
# Metric
metric = evaluate.load("rouge")
......
......@@ -459,14 +459,12 @@ def main():
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("glue_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("glue_no_trainer", experiment_config)
# Get the metric function
if args.task_name is not None:
......
......@@ -574,14 +574,12 @@ def main():
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
# The trackers initializes automatically on the main process.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("ner_no_trainer", experiment_config)
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("ner_no_trainer", experiment_config)
# Metrics
metric = evaluate.load("seqeval")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment