Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d739a707
"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "7addc9346c89563c0d36b30fa3534c58d3a1de05"
Unverified
Commit
d739a707
authored
Oct 11, 2022
by
Partho
Committed by
GitHub
Oct 10, 2022
Browse files
wrap forward passes with torch.no_grad() (#19416)
parent
870a9542
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
22 additions
and
15 deletions
+22
-15
tests/models/tapas/test_modeling_tapas.py
tests/models/tapas/test_modeling_tapas.py
+22
-15
No files found.
tests/models/tapas/test_modeling_tapas.py
View file @
d739a707
...
@@ -570,7 +570,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
...
@@ -570,7 +570,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
return_tensors
=
"pt"
)
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
return_tensors
=
"pt"
)
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
outputs
=
model
(
**
inputs
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs
)
# test the sequence output
# test the sequence output
expected_slice
=
torch
.
tensor
(
expected_slice
=
torch
.
tensor
(
[
[
...
@@ -608,7 +609,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
...
@@ -608,7 +609,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
return_tensors
=
"pt"
)
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
return_tensors
=
"pt"
)
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
outputs
=
model
(
**
inputs
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs
)
# test the logits
# test the logits
logits
=
outputs
.
logits
logits
=
outputs
.
logits
expected_shape
=
torch
.
Size
((
1
,
21
))
expected_shape
=
torch
.
Size
((
1
,
21
))
...
@@ -657,7 +659,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
...
@@ -657,7 +659,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
return_tensors
=
"pt"
)
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
return_tensors
=
"pt"
)
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
outputs
=
model
(
**
inputs
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs
)
# test the logits
# test the logits
logits
=
outputs
.
logits
logits
=
outputs
.
logits
expected_shape
=
torch
.
Size
((
1
,
21
))
expected_shape
=
torch
.
Size
((
1
,
21
))
...
@@ -705,7 +708,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
...
@@ -705,7 +708,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
padding
=
"longest"
,
return_tensors
=
"pt"
)
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
padding
=
"longest"
,
return_tensors
=
"pt"
)
inputs_on_device
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
inputs_on_device
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
outputs
=
model
(
**
inputs_on_device
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_on_device
)
# test the logits
# test the logits
logits
=
outputs
.
logits
logits
=
outputs
.
logits
expected_shape
=
torch
.
Size
((
2
,
28
))
expected_shape
=
torch
.
Size
((
2
,
28
))
...
@@ -774,15 +778,16 @@ class TapasModelIntegrationTest(unittest.TestCase):
...
@@ -774,15 +778,16 @@ class TapasModelIntegrationTest(unittest.TestCase):
float_answer
=
torch
.
FloatTensor
(
float_answer
).
to
(
torch_device
)
float_answer
=
torch
.
FloatTensor
(
float_answer
).
to
(
torch_device
)
# forward pass to get loss + logits:
# forward pass to get loss + logits:
outputs
=
model
(
with
torch
.
no_grad
():
input_ids
=
input_ids
,
outputs
=
model
(
attention_mask
=
attention_mask
,
input_ids
=
input_ids
,
token_type_ids
=
token_type_ids
,
attention_mask
=
attention_mask
,
labels
=
labels
,
token_type_ids
=
token_type_ids
,
numeric_values
=
numeric_values
,
labels
=
labels
,
numeric_values_scale
=
numeric_values_scale
,
numeric_values
=
numeric_values
,
float_answer
=
float_answer
,
numeric_values_scale
=
numeric_values_scale
,
)
float_answer
=
float_answer
,
)
# test the loss
# test the loss
loss
=
outputs
.
loss
loss
=
outputs
.
loss
...
@@ -829,7 +834,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
...
@@ -829,7 +834,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
return_tensors
=
"pt"
)
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
return_tensors
=
"pt"
)
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
outputs
=
model
(
**
inputs
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs
)
# test the logits
# test the logits
logits
=
outputs
.
logits
logits
=
outputs
.
logits
expected_shape
=
torch
.
Size
((
1
,
21
))
expected_shape
=
torch
.
Size
((
1
,
21
))
...
@@ -884,7 +890,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
...
@@ -884,7 +890,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
table
,
queries
=
prepare_tapas_single_inputs_for_inference
()
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
padding
=
"longest"
,
return_tensors
=
"pt"
)
inputs
=
tokenizer
(
table
=
table
,
queries
=
queries
,
padding
=
"longest"
,
return_tensors
=
"pt"
)
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
inputs
=
{
k
:
v
.
to
(
torch_device
)
for
k
,
v
in
inputs
.
items
()}
outputs
=
model
(
**
inputs
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs
)
# test the classification logits
# test the classification logits
logits
=
outputs
.
logits
logits
=
outputs
.
logits
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment