Commit d6c54697 authored by jinoobaek-qz's avatar jinoobaek-qz Committed by Lysandre Debut
Browse files

Delete older checkpoint after saving new checkpoint

parent 54a31f50
......@@ -224,10 +224,19 @@ def train(args, train_dataset, model, tokenizer):
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.save_total_limit and args.save_total_limit > 0:
# Check if we should delete older checkpoint(s)
glob_checkpoints = glob.glob(os.path.join(args.output_dir, 'checkpoint-*'))
if len(glob_checkpoints) + 1 > args.save_total_limit:
if len(glob_checkpoints) > args.save_total_limit:
checkpoints_sorted = []
for path in glob_checkpoints:
regex_match = re.match('.*checkpoint-([0-9]+)', path)
......@@ -236,21 +245,12 @@ def train(args, train_dataset, model, tokenizer):
checkpoints_sorted = sorted(checkpoints_sorted)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) + 1 - args.save_total_limit)
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment