Commit d340e232 authored by LysandreJik's avatar LysandreJik
Browse files

create_mask_from_sequences -> create_token_type_ids_from_sequences

parent c832f43a
...@@ -204,7 +204,7 @@ class BertTokenizer(PreTrainedTokenizer): ...@@ -204,7 +204,7 @@ class BertTokenizer(PreTrainedTokenizer):
return cls + token_ids_0 + sep + token_ids_1 + sep return cls + token_ids_0 + sep + token_ids_1 + sep
def create_mask_from_sequences(self, sequence_0, sequence_1): def create_token_type_ids_from_sequences(self, sequence_0, sequence_1):
""" """
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A BERT sequence pair mask has the following format: A BERT sequence pair mask has the following format:
......
...@@ -67,14 +67,3 @@ class DistilBertTokenizer(BertTokenizer): ...@@ -67,14 +67,3 @@ class DistilBertTokenizer(BertTokenizer):
def add_special_tokens_sequence_pair(self, token_ids_0, token_ids_1): def add_special_tokens_sequence_pair(self, token_ids_0, token_ids_1):
sep = [self.sep_token_id] sep = [self.sep_token_id]
return token_ids_0 + sep + token_ids_1 return token_ids_0 + sep + token_ids_1
def create_mask_from_sequences(self, sequence_0, sequence_1):
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A BERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
| first sequence | second sequence
"""
sep = [self.sep_token_id]
return len(self.encode(sequence_0) + sep) * [0] + len(self.encode(sequence_1)) * [1]
...@@ -97,7 +97,7 @@ class RobertaTokenizer(GPT2Tokenizer): ...@@ -97,7 +97,7 @@ class RobertaTokenizer(GPT2Tokenizer):
cls = [self.cls_token_id] cls = [self.cls_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def create_mask_from_sequences(self, sequence_0, sequence_1): def create_token_type_ids_from_sequences(self, sequence_0, sequence_1):
""" """
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A RoBERTa sequence pair mask has the following format: A RoBERTa sequence pair mask has the following format:
......
...@@ -780,7 +780,7 @@ class PreTrainedTokenizer(object): ...@@ -780,7 +780,7 @@ class PreTrainedTokenizer(object):
) )
if output_token_type: if output_token_type:
information["token_type_ids"] = self.create_mask_from_sequences(text, text_pair) information["token_type_ids"] = self.create_token_type_ids_from_sequences(text, text_pair)
else: else:
logger.warning("No special tokens were added. The two sequences have been concatenated.") logger.warning("No special tokens were added. The two sequences have been concatenated.")
sequence = first_sentence_tokens + second_sentence_tokens sequence = first_sentence_tokens + second_sentence_tokens
...@@ -863,7 +863,7 @@ class PreTrainedTokenizer(object): ...@@ -863,7 +863,7 @@ class PreTrainedTokenizer(object):
return information return information
def create_mask_from_sequences(self, sequence_0, sequence_1): def create_token_type_ids_from_sequences(self, sequence_0, sequence_1):
logger.warning("This tokenizer does not make use of special tokens.") logger.warning("This tokenizer does not make use of special tokens.")
return [0] * len(self.encode(sequence_0)) + [1] * len(self.encode(sequence_1)) return [0] * len(self.encode(sequence_0)) + [1] * len(self.encode(sequence_1))
......
...@@ -770,7 +770,7 @@ class XLMTokenizer(PreTrainedTokenizer): ...@@ -770,7 +770,7 @@ class XLMTokenizer(PreTrainedTokenizer):
cls = [self.cls_token_id] cls = [self.cls_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep return cls + token_ids_0 + sep + token_ids_1 + sep
def create_mask_from_sequences(self, sequence_0, sequence_1): def create_token_type_ids_from_sequences(self, sequence_0, sequence_1):
""" """
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
An XLM sequence pair mask has the following format: An XLM sequence pair mask has the following format:
......
...@@ -200,7 +200,7 @@ class XLNetTokenizer(PreTrainedTokenizer): ...@@ -200,7 +200,7 @@ class XLNetTokenizer(PreTrainedTokenizer):
cls = [self.cls_token_id] cls = [self.cls_token_id]
return token_ids_0 + sep + token_ids_1 + sep + cls return token_ids_0 + sep + token_ids_1 + sep + cls
def create_mask_from_sequences(self, sequence_0, sequence_1): def create_token_type_ids_from_sequences(self, sequence_0, sequence_1):
""" """
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A BERT sequence pair mask has the following format: A BERT sequence pair mask has the following format:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment