Unverified Commit d30cbaf5 authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into iterative_split_on_token

parents 9ce36e3e 9beaa85b
......@@ -12,6 +12,7 @@ The library currently contains PyTorch implementations, pre-trained model weight
4. **[Transformer-XL](https://github.com/kimiyoung/transformer-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du et al.
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/pytorch-transformers/examples.html).
......@@ -75,14 +76,15 @@ import torch
from pytorch_transformers import *
# PyTorch-Transformers has a unified API
# for 6 transformer architectures and 27 pretrained weights.
# for 7 transformer architectures and 30 pretrained weights.
# Model | Tokenizer | Pretrained weights shortcut
MODELS = [(BertModel, BertTokenizer, 'bert-base-uncased'),
(OpenAIGPTModel, OpenAIGPTTokenizer, 'openai-gpt'),
(GPT2Model, GPT2Tokenizer, 'gpt2'),
(TransfoXLModel, TransfoXLTokenizer, 'transfo-xl-wt103'),
(XLNetModel, XLNetTokenizer, 'xlnet-base-cased'),
(XLMModel, XLMTokenizer, 'xlm-mlm-enfr-1024')]
(XLMModel, XLMTokenizer, 'xlm-mlm-enfr-1024'),
(RobertaModel, RobertaTokenizer, 'roberta-base')]
# Let's encode some text in a sequence of hidden-states using each model:
for model_class, tokenizer_class, pretrained_weights in MODELS:
......@@ -123,7 +125,7 @@ traced_model = torch.jit.trace(model, (input_ids,))
model.save_pretrained('./directory/to/save/') # save
model = model_class.from_pretrained('./directory/to/save/') # re-load
tokenizer.save_pretrained('./directory/to/save/') # save
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
tokenizer = tokenizer_class.from_pretrained('./directory/to/save/') # re-load
# SOTA examples for GLUE, SQUAD, text generation...
```
......@@ -326,7 +328,7 @@ Breaking change in the `from_pretrained()`method:
1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.
2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead which can break derived model classes build based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/pytorch-transformers/pull/866) by forwarding the the model `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuratoin class attributes.
2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead which can break derived model classes build based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/pytorch-transformers/pull/866) by forwarding the the model `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuration class attributes.
Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
......
......@@ -47,3 +47,4 @@ The library currently contains PyTorch implementations, pre-trained model weight
model_doc/gpt2
model_doc/xlm
model_doc/xlnet
model_doc/roberta
RoBERTa
----------------------------------------------------
``RobertaConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.RobertaConfig
:members:
``RobertaTokenizer``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.RobertaTokenizer
:members:
``RobertaModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.RobertaModel
:members:
``RobertaForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.RobertaForMaskedLM
:members:
``RobertaForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.RobertaForSequenceClassification
:members:
This diff is collapsed.
......@@ -314,15 +314,16 @@ def main():
mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
if (step + 1) % args.gradient_accumulation_steps == 0:
scheduler.step() # Update learning rate schedule
optimizer.step()
scheduler.step() # Update learning rate schedule
optimizer.zero_grad()
global_step += 1
# Save a trained model
if n_gpu > 1 and torch.distributed.get_rank() == 0 or n_gpu <=1 :
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logging.info("** ** * Saving fine-tuned model ** ** * ")
model.save_pretrained(args.output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
......
......@@ -507,7 +507,7 @@ def main():
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir) and ( n_gpu > 1 and torch.distributed.get_rank() == 0 or n_gpu <=1 ):
if not os.path.exists(args.output_dir) and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
......@@ -602,15 +602,16 @@ def main():
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
scheduler.step() # Update learning rate schedule
optimizer.step()
scheduler.step() # Update learning rate schedule
optimizer.zero_grad()
global_step += 1
# Save a trained model
if args.do_train and ( n_gpu > 1 and torch.distributed.get_rank() == 0 or n_gpu <=1):
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("** ** * Saving fine - tuned model ** ** * ")
model.save_pretrained(args.output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
......
......@@ -211,10 +211,12 @@ def prune_heads(args, model, eval_dataloader, head_mask):
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_name", default=None, type=str, required=True,
help="Bert/XLNet/XLM pre-trained model selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(
ALL_MODELS))
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--output_dir", default=None, type=str, required=True,
......@@ -222,9 +224,9 @@ def main():
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
help="Pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
help="Pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--data_subset", type=int, default=-1,
......@@ -297,15 +299,15 @@ def main():
args.model_type = ""
for key in MODEL_CLASSES:
if key in args.model_name.lower():
if key in args.model_name_or_path.lower():
args.model_type = key # take the first match in model types
break
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name,
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels, finetuning_task=args.task_name,
output_attentions=True)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name)
model = model_class.from_pretrained(args.model_name, from_tf=bool('.ckpt' in args.model_name), config=config)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
......
......@@ -13,7 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet)."""
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
from __future__ import absolute_import, division, print_function
......@@ -33,6 +33,9 @@ from tqdm import tqdm, trange
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
BertForSequenceClassification, BertTokenizer,
RobertaConfig,
RobertaForSequenceClassification,
RobertaTokenizer,
XLMConfig, XLMForSequenceClassification,
XLMTokenizer, XLNetConfig,
XLNetForSequenceClassification,
......@@ -45,12 +48,13 @@ from utils_glue import (compute_metrics, convert_examples_to_features,
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
}
......@@ -214,7 +218,7 @@ def evaluate(args, model, tokenizer, prefix=""):
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM and RoBERTa don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
......@@ -264,14 +268,20 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
cls_token_at_end=bool(args.model_type in ['xlnet']), # xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
sep_token=tokenizer.sep_token,
cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ['roberta']), # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
......@@ -457,7 +467,7 @@ def main():
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
......
......@@ -481,7 +481,7 @@ def main():
# Save the trained model and the tokenizer
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
......@@ -498,7 +498,7 @@ def main():
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
......
......@@ -390,10 +390,16 @@ class WnliProcessor(DataProcessor):
def convert_examples_to_features(examples, label_list, max_seq_length,
tokenizer, output_mode,
cls_token_at_end=False, pad_on_left=False,
cls_token='[CLS]', sep_token='[SEP]', pad_token=0,
sequence_a_segment_id=0, sequence_b_segment_id=1,
cls_token_segment_id=1, pad_token_segment_id=0,
cls_token_at_end=False,
cls_token='[CLS]',
cls_token_segment_id=1,
sep_token='[SEP]',
sep_token_extra=False,
pad_on_left=False,
pad_token=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
sequence_b_segment_id=1,
mask_padding_with_zero=True):
""" Loads a data file into a list of `InputBatch`s
`cls_token_at_end` define the location of the CLS token:
......@@ -416,12 +422,14 @@ def convert_examples_to_features(examples, label_list, max_seq_length,
tokens_b = tokenizer.tokenize(example.text_b)
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
# Account for [CLS], [SEP], [SEP] with "- 3". " -4" for RoBERTa.
special_tokens_count = 4 if sep_token_extra else 3
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[:(max_seq_length - 2)]
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
special_tokens_count = 3 if sep_token_extra else 2
if len(tokens_a) > max_seq_length - special_tokens_count:
tokens_a = tokens_a[:(max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
......@@ -442,6 +450,9 @@ def convert_examples_to_features(examples, label_list, max_seq_length,
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = tokens_a + [sep_token]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
segment_ids = [sequence_a_segment_id] * len(tokens)
if tokens_b:
......
__version__ = "1.0.0"
__version__ = "1.1.0"
from .tokenization_auto import AutoTokenizer
from .tokenization_bert import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
......@@ -6,6 +6,8 @@ from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
from .tokenization_gpt2 import GPT2Tokenizer
from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE
from .tokenization_xlm import XLMTokenizer
from .tokenization_roberta import RobertaTokenizer
from .tokenization_utils import (PreTrainedTokenizer)
from .modeling_auto import (AutoConfig, AutoModel)
......@@ -36,6 +38,8 @@ from .modeling_xlm import (XLMConfig, XLMPreTrainedModel , XLMModel,
XLMWithLMHeadModel, XLMForSequenceClassification,
XLMForQuestionAnswering, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_roberta import (RobertaConfig, RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, TF_WEIGHTS_NAME,
PretrainedConfig, PreTrainedModel, prune_layer, Conv1D)
......
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert RoBERTa checkpoint."""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import numpy as np
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from pytorch_transformers.modeling_bert import (BertConfig, BertEncoder,
BertIntermediate, BertLayer,
BertModel, BertOutput,
BertSelfAttention,
BertSelfOutput)
from pytorch_transformers.modeling_roberta import (RobertaEmbeddings,
RobertaForMaskedLM,
RobertaForSequenceClassification,
RobertaModel)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
SAMPLE_TEXT = 'Hello world! cécé herlolip'
def convert_roberta_checkpoint_to_pytorch(roberta_checkpoint_path, pytorch_dump_folder_path, classification_head):
"""
Copy/paste/tweak roberta's weights to our BERT structure.
"""
roberta = FairseqRobertaModel.from_pretrained(roberta_checkpoint_path)
roberta.eval() # disable dropout
config = BertConfig(
vocab_size_or_config_json_file=50265,
hidden_size=roberta.args.encoder_embed_dim,
num_hidden_layers=roberta.args.encoder_layers,
num_attention_heads=roberta.args.encoder_attention_heads,
intermediate_size=roberta.args.encoder_ffn_embed_dim,
max_position_embeddings=514,
type_vocab_size=1,
)
if classification_head:
config.num_labels = roberta.args.num_classes
print("Our BERT config:", config)
model = RobertaForSequenceClassification(config) if classification_head else RobertaForMaskedLM(config)
model.eval()
# Now let's copy all the weights.
# Embeddings
roberta_sent_encoder = roberta.model.decoder.sentence_encoder
model.roberta.embeddings.word_embeddings.weight = roberta_sent_encoder.embed_tokens.weight
model.roberta.embeddings.position_embeddings.weight = roberta_sent_encoder.embed_positions.weight
model.roberta.embeddings.token_type_embeddings.weight.data = torch.zeros_like(model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c RoBERTa doesn't use them.
model.roberta.embeddings.LayerNorm.weight = roberta_sent_encoder.emb_layer_norm.weight
model.roberta.embeddings.LayerNorm.bias = roberta_sent_encoder.emb_layer_norm.bias
model.roberta.embeddings.LayerNorm.variance_epsilon = roberta_sent_encoder.emb_layer_norm.eps
for i in range(config.num_hidden_layers):
# Encoder: start of layer
layer: BertLayer = model.roberta.encoder.layer[i]
roberta_layer: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
### self attention
self_attn: BertSelfAttention = layer.attention.self
assert(
roberta_layer.self_attn.in_proj_weight.shape == torch.Size((3 * config.hidden_size, config.hidden_size))
)
# we use three distinct linear layers so we split the source layer here.
self_attn.query.weight.data = roberta_layer.self_attn.in_proj_weight[:config.hidden_size, :]
self_attn.query.bias.data = roberta_layer.self_attn.in_proj_bias[:config.hidden_size]
self_attn.key.weight.data = roberta_layer.self_attn.in_proj_weight[config.hidden_size:2*config.hidden_size, :]
self_attn.key.bias.data = roberta_layer.self_attn.in_proj_bias[config.hidden_size:2*config.hidden_size]
self_attn.value.weight.data = roberta_layer.self_attn.in_proj_weight[2*config.hidden_size:, :]
self_attn.value.bias.data = roberta_layer.self_attn.in_proj_bias[2*config.hidden_size:]
### self-attention output
self_output: BertSelfOutput = layer.attention.output
assert(
self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
)
self_output.dense.weight = roberta_layer.self_attn.out_proj.weight
self_output.dense.bias = roberta_layer.self_attn.out_proj.bias
self_output.LayerNorm.weight = roberta_layer.self_attn_layer_norm.weight
self_output.LayerNorm.bias = roberta_layer.self_attn_layer_norm.bias
self_output.LayerNorm.variance_epsilon = roberta_layer.self_attn_layer_norm.eps
### intermediate
intermediate: BertIntermediate = layer.intermediate
assert(
intermediate.dense.weight.shape == roberta_layer.fc1.weight.shape
)
intermediate.dense.weight = roberta_layer.fc1.weight
intermediate.dense.bias = roberta_layer.fc1.bias
### output
bert_output: BertOutput = layer.output
assert(
bert_output.dense.weight.shape == roberta_layer.fc2.weight.shape
)
bert_output.dense.weight = roberta_layer.fc2.weight
bert_output.dense.bias = roberta_layer.fc2.bias
bert_output.LayerNorm.weight = roberta_layer.final_layer_norm.weight
bert_output.LayerNorm.bias = roberta_layer.final_layer_norm.bias
bert_output.LayerNorm.variance_epsilon = roberta_layer.final_layer_norm.eps
#### end of layer
if classification_head:
model.classifier.dense.weight = roberta.model.classification_heads['mnli'].dense.weight
model.classifier.dense.bias = roberta.model.classification_heads['mnli'].dense.bias
model.classifier.out_proj.weight = roberta.model.classification_heads['mnli'].out_proj.weight
model.classifier.out_proj.bias = roberta.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
model.lm_head.dense.weight = roberta.model.decoder.lm_head.dense.weight
model.lm_head.dense.bias = roberta.model.decoder.lm_head.dense.bias
model.lm_head.layer_norm.weight = roberta.model.decoder.lm_head.layer_norm.weight
model.lm_head.layer_norm.bias = roberta.model.decoder.lm_head.layer_norm.bias
model.lm_head.layer_norm.variance_epsilon = roberta.model.decoder.lm_head.layer_norm.eps
model.lm_head.decoder.weight = roberta.model.decoder.lm_head.weight
model.lm_head.bias = roberta.model.decoder.lm_head.bias
# Let's check that we get the same results.
input_ids: torch.Tensor = roberta.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1
our_output = model(input_ids)[0]
if classification_head:
their_output = roberta.model.classification_heads['mnli'](roberta.extract_features(input_ids))
else:
their_output = roberta.model(input_ids)[0]
print(our_output.shape, their_output.shape)
success = torch.allclose(our_output, their_output, atol=1e-3)
print(
"Do both models output the same tensors?",
"🔥" if success else "💩"
)
if not success:
raise Exception("Something went wRoNg")
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--roberta_checkpoint_path",
default = None,
type = str,
required = True,
help = "Path the official PyTorch dump.")
parser.add_argument("--pytorch_dump_folder_path",
default = None,
type = str,
required = True,
help = "Path to the output PyTorch model.")
parser.add_argument("--classification_head",
action = "store_true",
help = "Whether to convert a final classification head.")
args = parser.parse_args()
convert_roberta_checkpoint_to_pytorch(
args.roberta_checkpoint_path,
args.pytorch_dump_folder_path,
args.classification_head
)
......@@ -29,6 +29,7 @@ from .modeling_gpt2 import GPT2Config, GPT2Model
from .modeling_transfo_xl import TransfoXLConfig, TransfoXLModel
from .modeling_xlnet import XLNetConfig, XLNetModel
from .modeling_xlm import XLMConfig, XLMModel
from .modeling_roberta import RobertaConfig, RobertaModel
from .modeling_utils import PreTrainedModel, SequenceSummary
......@@ -51,6 +52,7 @@ class AutoConfig(object):
- contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
- contains `xlnet`: XLNetConfig (XLNet model)
- contains `xlm`: XLMConfig (XLM model)
- contains `roberta`: RobertaConfig (RoBERTa model)
This class cannot be instantiated using `__init__()` (throw an error).
"""
......@@ -71,6 +73,7 @@ class AutoConfig(object):
- contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
- contains `xlnet`: XLNetConfig (XLNet model)
- contains `xlm`: XLMConfig (XLM model)
- contains `roberta`: RobertaConfig (RoBERTa model)
Params:
**pretrained_model_name_or_path**: either:
......@@ -107,7 +110,9 @@ class AutoConfig(object):
assert unused_kwargs == {'foo': False}
"""
if 'bert' in pretrained_model_name_or_path:
if 'roberta' in pretrained_model_name_or_path:
return RobertaConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif 'bert' in pretrained_model_name_or_path:
return BertConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif 'openai-gpt' in pretrained_model_name_or_path:
return OpenAIGPTConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
......@@ -122,7 +127,7 @@ class AutoConfig(object):
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm'".format(pretrained_model_name_or_path))
"'xlm', 'roberta'".format(pretrained_model_name_or_path))
class AutoModel(object):
......@@ -137,12 +142,13 @@ class AutoModel(object):
The base model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `bert`: BertConfig (Bert model)
- contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
- contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
- contains `xlnet`: XLNetConfig (XLNet model)
- contains `xlm`: XLMConfig (XLM model)
- contains `bert`: BertModel (Bert model)
- contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
- contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
- contains `xlnet`: XLNetModel (XLNet model)
- contains `xlm`: XLMModel (XLM model)
- contains `roberta`: RobertaModel (RoBERTa model)
This class cannot be instantiated using `__init__()` (throw an error).
"""
......@@ -157,12 +163,13 @@ class AutoModel(object):
The base model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `bert`: BertConfig (Bert model)
- contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
- contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
- contains `xlnet`: XLNetConfig (XLNet model)
- contains `xlm`: XLMConfig (XLM model)
- contains `bert`: BertModel (Bert model)
- contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
- contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
- contains `xlnet`: XLNetModel (XLNet model)
- contains `xlm`: XLMModel (XLM model)
- contains `roberta`: RobertaModel (RoBERTa model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
......@@ -218,7 +225,9 @@ class AutoModel(object):
model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
if 'bert' in pretrained_model_name_or_path:
if 'roberta' in pretrained_model_name_or_path:
return RobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'bert' in pretrained_model_name_or_path:
return BertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'openai-gpt' in pretrained_model_name_or_path:
return OpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
......@@ -233,4 +242,4 @@ class AutoModel(object):
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm'".format(pretrained_model_name_or_path))
"'xlm', 'roberta'".format(pretrained_model_name_or_path))
......@@ -578,6 +578,8 @@ BERT_START_DOCSTRING = r""" The BERT model was proposed in
Parameters:
config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
BERT_INPUTS_DOCSTRING = r"""
......
......@@ -383,6 +383,8 @@ GPT2_START_DOCSTRING = r""" OpenAI GPT-2 model was proposed in
Parameters:
config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
GPT2_INPUTS_DOCSTRING = r""" Inputs:
......@@ -612,7 +614,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the intput sequence).
the classification head takes as input the input of a specified classification token index in the input sequence).
""", GPT2_START_DOCSTRING)
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
r""" Inputs:
......
......@@ -397,6 +397,8 @@ OPENAI_GPT_START_DOCSTRING = r""" OpenAI GPT model was proposed in
Parameters:
config (:class:`~pytorch_transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
OPENAI_GPT_INPUTS_DOCSTRING = r""" Inputs:
......@@ -602,7 +604,7 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the intput sequence).
the classification head takes as input the input of a specified classification token index in the input sequence).
""", OPENAI_GPT_START_DOCSTRING)
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
r""" Inputs:
......
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RoBERTa model. """
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss
from pytorch_transformers.modeling_bert import (BertConfig, BertEmbeddings,
BertLayerNorm, BertModel,
BertPreTrainedModel, gelu)
from pytorch_transformers.modeling_utils import add_start_docstrings
logger = logging.getLogger(__name__)
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin",
'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin",
'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-pytorch_model.bin",
}
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-config.json",
'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-config.json",
'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-config.json",
}
class RobertaEmbeddings(BertEmbeddings):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config):
super(RobertaEmbeddings, self).__init__(config)
self.padding_idx = 1
def forward(self, input_ids, token_type_ids=None, position_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
# Position numbers begin at padding_idx+1. Padding symbols are ignored.
# cf. fairseq's `utils.make_positions`
position_ids = torch.arange(self.padding_idx+1, seq_length+self.padding_idx+1, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
return super(RobertaEmbeddings, self).forward(input_ids, token_type_ids=token_type_ids, position_ids=position_ids)
class RobertaConfig(BertConfig):
pretrained_config_archive_map = ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP
ROBERTA_START_DOCSTRING = r""" The RoBERTa model was proposed in
`RoBERTa: A Robustly Optimized BERT Pretraining Approach`_
by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
Veselin Stoyanov. It is based on Google's BERT model released in 2018.
It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining
objective and training with much larger mini-batches and learning rates.
This implementation is the same as BertModel with a tiny embeddings tweak as well as a setup for Roberta pretrained
models.
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
.. _`RoBERTa: A Robustly Optimized BERT Pretraining Approach`:
https://arxiv.org/abs/1907.11692
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Parameters:
config (:class:`~pytorch_transformers.RobertaConfig`): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
ROBERTA_INPUTS_DOCSTRING = r"""
Inputs:
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
To match pre-training, RoBERTa input sequence should be formatted with [CLS] and [SEP] tokens as follows:
(a) For sequence pairs:
``tokens: [CLS] is this jack ##son ##ville ? [SEP][SEP] no it is not . [SEP]``
(b) For single sequences:
``tokens: [CLS] the dog is hairy . [SEP]``
Fully encoded sequences or sequence pairs can be obtained using the RobertaTokenizer.encode function with
the ``add_special_tokens`` parameter set to ``True``.
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1[``.
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""
@add_start_docstrings("The bare RoBERTa Model transformer outputing raw hidden-states without any specific head on top.",
ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
class RobertaModel(BertModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the output of the last layer of the model.
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during Bert pretraining. This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaModel.from_pretrained('roberta-base')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
config_class = RobertaConfig
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaModel, self).__init__(config)
self.embeddings = RobertaEmbeddings(config)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, position_ids=None, head_mask=None):
if input_ids[:, 0].sum().item() != 0:
logger.warning("A sequence with no special tokens has been passed to the RoBERTa model. "
"This model requires special tokens in order to work. "
"Please specify add_special_tokens=True in your encoding.")
return super(RobertaModel, self).forward(input_ids, token_type_ids, attention_mask, position_ids, head_mask)
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """,
ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
class RobertaForMaskedLM(BertPreTrainedModel):
r"""
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the masked language modeling loss.
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
in ``[0, ..., config.vocab_size]``
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Masked language modeling loss.
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaForMaskedLM.from_pretrained('roberta-base')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
"""
config_class = RobertaConfig
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForMaskedLM, self).__init__(config)
self.roberta = RobertaModel(config)
self.lm_head = RobertaLMHead(config)
self.apply(self.init_weights)
self.tie_weights()
def tie_weights(self):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.lm_head.decoder, self.roberta.embeddings.word_embeddings)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, position_ids=None,
head_mask=None):
outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
attention_mask=attention_mask, head_mask=head_mask)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
if masked_lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
outputs = (masked_lm_loss,) + outputs
return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
class RobertaLMHead(nn.Module):
"""Roberta Head for masked language modeling."""
def __init__(self, config):
super(RobertaLMHead, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x) + self.bias
return x
@add_start_docstrings("""RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer
on top of the pooled output) e.g. for GLUE tasks. """,
ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
class RobertaForSequenceClassification(BertPreTrainedModel):
r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels]``.
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss.
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = RoertaTokenizer.from_pretrained('roberta-base')
model = RobertaForSequenceClassification.from_pretrained('roberta-base')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
config_class = RobertaConfig
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForSequenceClassification, self).__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
self.classifier = RobertaClassificationHead(config)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
position_ids=None, head_mask=None):
outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
attention_mask=attention_mask, head_mask=head_mask)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[2:]
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
class RobertaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super(RobertaClassificationHead, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
......@@ -928,6 +928,8 @@ TRANSFO_XL_START_DOCSTRING = r""" The Transformer-XL model was proposed in
Parameters:
config (:class:`~pytorch_transformers.TransfoXLConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
TRANSFO_XL_INPUTS_DOCSTRING = r"""
......
......@@ -71,6 +71,10 @@ class PretrainedConfig(object):
r""" Base class for all configuration classes.
Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations.
Note:
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights.
It only affects the model's configuration.
Class attributes (overridden by derived classes):
- ``pretrained_config_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained model configurations as values.
......
......@@ -416,6 +416,8 @@ XLM_START_DOCSTRING = r""" The XLM model was proposed in
Parameters:
config (:class:`~pytorch_transformers.XLMConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
XLM_INPUTS_DOCSTRING = r"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment