Unverified Commit d24e84d9 authored by IMvision12's avatar IMvision12 Committed by GitHub
Browse files

Pytorch type hints (#20112)

* initial commit

* Update modeling_whisper.py

* Fixing Tests

* modeling_vision_text_dual_encoder

* modeling_vision_encoder_decoder

* Update modeling_vit.py

* Update modeling_vit_msn.py

* Update modeling_trajectory_transformer.py

* style

* Update modeling_time_series_transformer.py

* Update modeling_time_series_transformer.py

* Update modeling_segformer.py

* Update modeling_plbart.py

* Update modeling_dpt.py

* Update modeling_deit.py

* Update modeling_dpt.py

* Update modeling_esm.py

* Update modeling_fnet.py

* Update modeling_fnet.py

* Update modeling_fnet.py

* Update modeling_flava.py

* Update modeling_flava.py

* Update modeling_layoutlmv3.py

* Update modeling_levit.py
parent 03bc6ece
...@@ -494,7 +494,7 @@ class DeiTModel(DeiTPreTrainedModel): ...@@ -494,7 +494,7 @@ class DeiTModel(DeiTPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
......
...@@ -712,12 +712,12 @@ class DPTModel(DPTPreTrainedModel): ...@@ -712,12 +712,12 @@ class DPTModel(DPTPreTrainedModel):
) )
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -875,13 +875,13 @@ class DPTForDepthEstimation(DPTPreTrainedModel): ...@@ -875,13 +875,13 @@ class DPTForDepthEstimation(DPTPreTrainedModel):
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth depth estimation maps for computing the loss. Ground truth depth estimation maps for computing the loss.
...@@ -1036,13 +1036,13 @@ class DPTForSemanticSegmentation(DPTPreTrainedModel): ...@@ -1036,13 +1036,13 @@ class DPTForSemanticSegmentation(DPTPreTrainedModel):
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values=None, pixel_values: Optional[torch.FloatTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.Tensor], SemanticSegmenterOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
......
...@@ -940,7 +940,7 @@ class EsmForMaskedLM(EsmPreTrainedModel): ...@@ -940,7 +940,7 @@ class EsmForMaskedLM(EsmPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, MaskedLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
...@@ -1042,7 +1042,7 @@ class EsmForSequenceClassification(EsmPreTrainedModel): ...@@ -1042,7 +1042,7 @@ class EsmForSequenceClassification(EsmPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1138,7 +1138,7 @@ class EsmForTokenClassification(EsmPreTrainedModel): ...@@ -1138,7 +1138,7 @@ class EsmForTokenClassification(EsmPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
......
...@@ -943,7 +943,7 @@ class FlavaImageModel(FlavaPreTrainedModel): ...@@ -943,7 +943,7 @@ class FlavaImageModel(FlavaPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1039,7 +1039,7 @@ class FlavaTextModel(FlavaPreTrainedModel): ...@@ -1039,7 +1039,7 @@ class FlavaTextModel(FlavaPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1142,7 +1142,7 @@ class FlavaMultimodalModel(FlavaPreTrainedModel): ...@@ -1142,7 +1142,7 @@ class FlavaMultimodalModel(FlavaPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
......
...@@ -548,13 +548,13 @@ class FNetModel(FNetPreTrainedModel): ...@@ -548,13 +548,13 @@ class FNetModel(FNetPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[tuple, BaseModelOutput]:
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
) )
......
...@@ -848,18 +848,18 @@ class LayoutLMv3Model(LayoutLMv3PreTrainedModel): ...@@ -848,18 +848,18 @@ class LayoutLMv3Model(LayoutLMv3PreTrainedModel):
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
bbox=None, bbox: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values=None, pixel_values: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutput]:
r""" r"""
Returns: Returns:
......
...@@ -16,7 +16,7 @@ ...@@ -16,7 +16,7 @@
import itertools import itertools
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional, Tuple from typing import Optional, Tuple, Union
import torch import torch
import torch.utils.checkpoint import torch.utils.checkpoint
...@@ -561,7 +561,7 @@ class LevitModel(LevitPreTrainedModel): ...@@ -561,7 +561,7 @@ class LevitModel(LevitPreTrainedModel):
pixel_values: torch.FloatTensor = None, pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
) )
...@@ -630,7 +630,7 @@ class LevitForImageClassification(LevitPreTrainedModel): ...@@ -630,7 +630,7 @@ class LevitForImageClassification(LevitPreTrainedModel):
labels: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
...@@ -722,7 +722,7 @@ class LevitForImageClassificationWithTeacher(LevitPreTrainedModel): ...@@ -722,7 +722,7 @@ class LevitForImageClassificationWithTeacher(LevitPreTrainedModel):
pixel_values: torch.FloatTensor = None, pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, LevitForImageClassificationWithTeacherOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
......
...@@ -1176,7 +1176,7 @@ class PLBartModel(PLBartPreTrainedModel): ...@@ -1176,7 +1176,7 @@ class PLBartModel(PLBartPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
......
...@@ -1159,16 +1159,16 @@ class RealmEmbedder(RealmPreTrainedModel): ...@@ -1159,16 +1159,16 @@ class RealmEmbedder(RealmPreTrainedModel):
@replace_return_docstrings(output_type=RealmEmbedderOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=RealmEmbedderOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, RealmEmbedderOutput]:
r""" r"""
Returns: Returns:
...@@ -1241,20 +1241,20 @@ class RealmScorer(RealmPreTrainedModel): ...@@ -1241,20 +1241,20 @@ class RealmScorer(RealmPreTrainedModel):
@replace_return_docstrings(output_type=RealmScorerOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=RealmScorerOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
candidate_input_ids=None, candidate_input_ids: Optional[torch.LongTensor] = None,
candidate_attention_mask=None, candidate_attention_mask: Optional[torch.FloatTensor] = None,
candidate_token_type_ids=None, candidate_token_type_ids: Optional[torch.LongTensor] = None,
candidate_inputs_embeds=None, candidate_inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, RealmScorerOutput]:
r""" r"""
candidate_input_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`): candidate_input_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`):
Indices of candidate input sequence tokens in the vocabulary. Indices of candidate input sequence tokens in the vocabulary.
...@@ -1396,19 +1396,19 @@ class RealmKnowledgeAugEncoder(RealmPreTrainedModel): ...@@ -1396,19 +1396,19 @@ class RealmKnowledgeAugEncoder(RealmPreTrainedModel):
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
relevance_score=None, relevance_score: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
mlm_mask=None, mlm_mask: Optional[torch.LongTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, MaskedLMOutput]:
r""" r"""
relevance_score (`torch.FloatTensor` of shape `(batch_size, num_candidates)`, *optional*): relevance_score (`torch.FloatTensor` of shape `(batch_size, num_candidates)`, *optional*):
Relevance score derived from RealmScorer, must be specified if you want to compute the masked language Relevance score derived from RealmScorer, must be specified if you want to compute the masked language
...@@ -1537,21 +1537,21 @@ class RealmReader(RealmPreTrainedModel): ...@@ -1537,21 +1537,21 @@ class RealmReader(RealmPreTrainedModel):
@replace_return_docstrings(output_type=RealmReaderOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=RealmReaderOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
relevance_score=None, relevance_score: Optional[torch.FloatTensor] = None,
block_mask=None, block_mask: Optional[torch.BoolTensor] = None,
start_positions=None, start_positions: Optional[torch.LongTensor] = None,
end_positions=None, end_positions: Optional[torch.LongTensor] = None,
has_answers=None, has_answers: Optional[torch.BoolTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, RealmReaderOutput]:
r""" r"""
relevance_score (`torch.FloatTensor` of shape `(searcher_beam_size,)`, *optional*): relevance_score (`torch.FloatTensor` of shape `(searcher_beam_size,)`, *optional*):
Relevance score, which must be specified if you want to compute the logits and marginal log loss. Relevance score, which must be specified if you want to compute the logits and marginal log loss.
...@@ -1763,12 +1763,12 @@ class RealmForOpenQA(RealmPreTrainedModel): ...@@ -1763,12 +1763,12 @@ class RealmForOpenQA(RealmPreTrainedModel):
@replace_return_docstrings(output_type=RealmForOpenQAOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=RealmForOpenQAOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids, input_ids: Optional[torch.LongTensor],
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
answer_ids=None, answer_ids: Optional[torch.LongTensor] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, RealmForOpenQAOutput]:
r""" r"""
Returns: Returns:
......
...@@ -706,7 +706,7 @@ class SegformerDecodeHead(SegformerPreTrainedModel): ...@@ -706,7 +706,7 @@ class SegformerDecodeHead(SegformerPreTrainedModel):
self.config = config self.config = config
def forward(self, encoder_hidden_states): def forward(self, encoder_hidden_states: torch.FloatTensor):
batch_size = encoder_hidden_states[-1].shape[0] batch_size = encoder_hidden_states[-1].shape[0]
all_hidden_states = () all_hidden_states = ()
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
""" Classes to support Speech-Encoder-Text-Decoder architectures""" """ Classes to support Speech-Encoder-Text-Decoder architectures"""
from typing import Optional from typing import Optional, Tuple, Union
import torch import torch
from torch import nn from torch import nn
...@@ -443,22 +443,22 @@ class SpeechEncoderDecoderModel(PreTrainedModel): ...@@ -443,22 +443,22 @@ class SpeechEncoderDecoderModel(PreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
inputs=None, inputs: Optional[torch.FloatTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids=None, decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
input_values=None, input_values: Optional[torch.FloatTensor] = None,
input_features=None, input_features: Optional[torch.FloatTensor] = None,
return_dict=None, return_dict: Optional[bool] = None,
**kwargs, **kwargs,
): ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r""" r"""
Returns: Returns:
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
import math import math
import random import random
from typing import Optional, Tuple from typing import Optional, Tuple, Union
import torch import torch
from torch import nn from torch import nn
...@@ -1144,21 +1144,21 @@ class Speech2TextModel(Speech2TextPreTrainedModel): ...@@ -1144,21 +1144,21 @@ class Speech2TextModel(Speech2TextPreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_features=None, input_features: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids=None, decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
decoder_head_mask=None, decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask=None, cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs=None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r""" r"""
Returns: Returns:
...@@ -1291,22 +1291,22 @@ class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel): ...@@ -1291,22 +1291,22 @@ class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_features=None, input_features: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids=None, decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
decoder_head_mask=None, decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask=None, cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs=None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
......
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
import copy import copy
import math import math
import random import random
from typing import Optional, Tuple from typing import Optional, Tuple, Union
import torch import torch
from torch import nn from torch import nn
...@@ -780,20 +780,20 @@ class Speech2Text2ForCausalLM(Speech2Text2PreTrainedModel): ...@@ -780,20 +780,20 @@ class Speech2Text2ForCausalLM(Speech2Text2PreTrainedModel):
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None, encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask=None, encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask=None, cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], CausalLMOutputWithCrossAttentions]:
r""" r"""
Args: Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
......
...@@ -1584,7 +1584,7 @@ class TimeSeriesTransformerModel(TimeSeriesTransformerPreTrainedModel): ...@@ -1584,7 +1584,7 @@ class TimeSeriesTransformerModel(TimeSeriesTransformerPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Seq2SeqTimeSeriesModelOutput, Tuple]:
r""" r"""
Returns: Returns:
...@@ -1747,7 +1747,7 @@ class TimeSeriesTransformerForPrediction(TimeSeriesTransformerPreTrainedModel): ...@@ -1747,7 +1747,7 @@ class TimeSeriesTransformerForPrediction(TimeSeriesTransformerPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Seq2SeqTimeSeriesModelOutput, Tuple]:
r""" r"""
Returns: Returns:
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
import math import math
import os import os
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional, Tuple from typing import Optional, Tuple, Union
import numpy as np import numpy as np
import torch import torch
...@@ -478,7 +478,7 @@ class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel): ...@@ -478,7 +478,7 @@ class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.Tensor], TrajectoryTransformerOutput]:
r""" r"""
Returns: Returns:
......
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
import gc import gc
import os import os
import tempfile import tempfile
from typing import Optional from typing import Optional, Tuple, Union
import torch import torch
from torch import nn from torch import nn
...@@ -520,19 +520,19 @@ class VisionEncoderDecoderModel(PreTrainedModel): ...@@ -520,19 +520,19 @@ class VisionEncoderDecoderModel(PreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values=None, pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids=None, decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
**kwargs, **kwargs,
): ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r""" r"""
Returns: Returns:
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
""" PyTorch VisionTextDualEncoder model.""" """ PyTorch VisionTextDualEncoder model."""
from typing import Optional from typing import Optional, Tuple, Union
import torch import torch
from torch import nn from torch import nn
...@@ -295,16 +295,16 @@ class VisionTextDualEncoderModel(PreTrainedModel): ...@@ -295,16 +295,16 @@ class VisionTextDualEncoderModel(PreTrainedModel):
@replace_return_docstrings(output_type=CLIPOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=CLIPOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
pixel_values=None, pixel_values: Optional[torch.FloatTensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
return_loss=None, return_loss: Optional[bool] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.Tensor], CLIPOutput]:
r""" r"""
Returns: Returns:
......
...@@ -541,7 +541,7 @@ class ViTModel(ViTPreTrainedModel): ...@@ -541,7 +541,7 @@ class ViTModel(ViTPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
......
...@@ -525,7 +525,7 @@ class ViTMSNModel(ViTMSNPreTrainedModel): ...@@ -525,7 +525,7 @@ class ViTMSNModel(ViTMSNPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
): ) -> Union[tuple, BaseModelOutput]:
r""" r"""
Returns: Returns:
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
import math import math
import random import random
from typing import Optional, Tuple from typing import Optional, Tuple, Union
import torch import torch
import torch.utils.checkpoint import torch.utils.checkpoint
...@@ -1004,20 +1004,20 @@ class WhisperModel(WhisperPreTrainedModel): ...@@ -1004,20 +1004,20 @@ class WhisperModel(WhisperPreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_features=None, input_features: Optional[torch.LongTensor] = None,
decoder_input_ids=None, decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
decoder_head_mask=None, decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask=None, cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs=None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
r""" r"""
Returns: Returns:
...@@ -1140,21 +1140,21 @@ class WhisperForConditionalGeneration(WhisperPreTrainedModel): ...@@ -1140,21 +1140,21 @@ class WhisperForConditionalGeneration(WhisperPreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_features=None, input_features: Optional[torch.LongTensor] = None,
decoder_input_ids=None, decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
decoder_head_mask=None, decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask=None, cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs=None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment