Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d03695f3
Unverified
Commit
d03695f3
authored
Feb 26, 2021
by
Patrick von Platen
Committed by
GitHub
Feb 26, 2021
Browse files
[LED] Correct Docs (#10419)
* correct docs * correct tf model docs as well
parent
7fc686ef
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
23 additions
and
5 deletions
+23
-5
src/transformers/models/led/modeling_led.py
src/transformers/models/led/modeling_led.py
+11
-2
src/transformers/models/led/modeling_tf_led.py
src/transformers/models/led/modeling_tf_led.py
+12
-3
No files found.
src/transformers/models/led/modeling_led.py
View file @
d03695f3
...
@@ -1516,8 +1516,17 @@ LED_INPUTS_DOCSTRING = r"""
...
@@ -1516,8 +1516,17 @@ LED_INPUTS_DOCSTRING = r"""
`What are attention masks? <../glossary.html#attention-mask>`__
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
Indices of decoder input sequence tokens in the vocabulary.
shifting the :obj:`input_ids` to the right, following the paper.
Indices can be obtained using :class:`~transformers.LedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
LED uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
:obj:`past_key_values`).
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
also be used by default.
...
...
src/transformers/models/led/modeling_tf_led.py
View file @
d03695f3
...
@@ -1533,9 +1533,18 @@ LED_INPUTS_DOCSTRING = r"""
...
@@ -1533,9 +1533,18 @@ LED_INPUTS_DOCSTRING = r"""
- 0 for tokens that are **masked**.
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
decoder_input_ids (:obj:`tf.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
Indices of decoder input sequence tokens in the vocabulary.
shifting the input_ids right, following the paper.
Indices can be obtained using :class:`~transformers.LedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
LED uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
:obj:`past_key_values`).
decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment