Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
cd77c750
"git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "12bb7fe77068a2a18b9c48320006dc91db4d4db0"
Commit
cd77c750
authored
Jan 16, 2020
by
Lysandre
Committed by
Lysandre Debut
Jan 23, 2020
Browse files
BERT PyTorch models
parent
3922a249
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
395 additions
and
335 deletions
+395
-335
docs/source/model_doc/bert.rst
docs/source/model_doc/bert.rst
+46
-18
src/transformers/modeling_albert.py
src/transformers/modeling_albert.py
+1
-1
src/transformers/modeling_bert.py
src/transformers/modeling_bert.py
+348
-316
No files found.
docs/source/model_doc/bert.rst
View file @
cd77c750
BERT
BERT
----------------------------------------------------
----------------------------------------------------
``BertConfig``
Overview
~~~~~~~~~~~~~~~~~~~~~
The BERT model was proposed in `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`__
by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
pre-trained using a combination of masked language modeling objective and next sentence prediction
on a large corpus comprising the Toronto Book Corpus and Wikipedia.
The abstract from the paper is the following:
*We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations
from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional
representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result,
the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models
for a wide range of tasks, such as question answering and language inference, without substantial task-specific
architecture modifications.*
*BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural
language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI
accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute
improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).*
Tips:
- BERT is a model with absolute position embeddings so it's usually advised to pad the inputs on
the right rather than the left.
BertConfig
~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertConfig
.. autoclass:: transformers.BertConfig
:members:
:members:
``
BertTokenizer
``
BertTokenizer
~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertTokenizer
.. autoclass:: transformers.BertTokenizer
:members:
:members:
``
BertModel
``
BertModel
~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertModel
.. autoclass:: transformers.BertModel
:members:
:members:
``
BertForPreTraining
``
BertForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForPreTraining
.. autoclass:: transformers.BertForPreTraining
:members:
:members:
``
BertForMaskedLM
``
BertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForMaskedLM
.. autoclass:: transformers.BertForMaskedLM
:members:
:members:
``
BertForNextSentencePrediction
``
BertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForNextSentencePrediction
.. autoclass:: transformers.BertForNextSentencePrediction
:members:
:members:
``
BertForSequenceClassification
``
BertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForSequenceClassification
.. autoclass:: transformers.BertForSequenceClassification
:members:
:members:
``
BertForMultipleChoice
``
BertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForMultipleChoice
.. autoclass:: transformers.BertForMultipleChoice
:members:
:members:
``
BertForTokenClassification
``
BertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForTokenClassification
.. autoclass:: transformers.BertForTokenClassification
:members:
:members:
``
BertForQuestionAnswering
``
BertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForQuestionAnswering
.. autoclass:: transformers.BertForQuestionAnswering
:members:
:members:
``
TFBertModel
``
TFBertModel
~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertModel
.. autoclass:: transformers.TFBertModel
:members:
:members:
``
TFBertForPreTraining
``
TFBertForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForPreTraining
.. autoclass:: transformers.TFBertForPreTraining
:members:
:members:
``
TFBertForMaskedLM
``
TFBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForMaskedLM
.. autoclass:: transformers.TFBertForMaskedLM
:members:
:members:
``
TFBertForNextSentencePrediction
``
TFBertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForNextSentencePrediction
.. autoclass:: transformers.TFBertForNextSentencePrediction
:members:
:members:
``
TFBertForSequenceClassification
``
TFBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForSequenceClassification
.. autoclass:: transformers.TFBertForSequenceClassification
:members:
:members:
``
TFBertForMultipleChoice
``
TFBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForMultipleChoice
.. autoclass:: transformers.TFBertForMultipleChoice
:members:
:members:
``
TFBertForTokenClassification
``
TFBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForTokenClassification
.. autoclass:: transformers.TFBertForTokenClassification
:members:
:members:
``
TFBertForQuestionAnswering
``
TFBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForQuestionAnswering
.. autoclass:: transformers.TFBertForQuestionAnswering
...
...
src/transformers/modeling_albert.py
View file @
cd77c750
...
@@ -645,7 +645,7 @@ class AlbertForMaskedLM(AlbertPreTrainedModel):
...
@@ -645,7 +645,7 @@ class AlbertForMaskedLM(AlbertPreTrainedModel):
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Masked language modeling loss.
Masked language modeling loss.
prediction_scores
`
`torch.FloatTensor`
`
of shape
`
`(batch_size, sequence_length, config.vocab_size)`
`
prediction_scores
(:obj:
`torch.FloatTensor` of shape
:obj:
`(batch_size, sequence_length, config.vocab_size)`
)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
...
...
src/transformers/modeling_bert.py
View file @
cd77c750
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment