"git@developer.sourcefind.cn:chenpangpang/open-webui.git" did not exist on "334d5246ba18d3297182f91a66f1f9d7b89ea0b4"
Unverified Commit cb91ec67 authored by David Reguera's avatar David Reguera Committed by GitHub
Browse files

Add type hints for several pytorch models (batch-2) (#25557)



* Add missing type hint to cpmant

* Add type hints to decision_transformer model

* Add type hints to deformable_detr models

* Add type hints to detr models

* Add type hints to deta models

* Add type hints to dpr models

* Update attention mask type hint
Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>

* Update remaining attention masks type hints

* Update docstrings' type hints related to attention masks

---------
Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>
parent de139702
...@@ -1126,7 +1126,7 @@ CONDITIONAL_DETR_INPUTS_DOCSTRING = r""" ...@@ -1126,7 +1126,7 @@ CONDITIONAL_DETR_INPUTS_DOCSTRING = r"""
[What are attention masks?](../glossary#attention-mask) [What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, num_queries)`, *optional*): decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
Not used by default. Can be used to mask object queries. Not used by default. Can be used to mask object queries.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
...@@ -1872,7 +1872,7 @@ class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel): ...@@ -1872,7 +1872,7 @@ class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel):
self, self,
pixel_values: torch.FloatTensor, pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
......
...@@ -653,7 +653,7 @@ class CpmAntModel(CpmAntPreTrainedModel): ...@@ -653,7 +653,7 @@ class CpmAntModel(CpmAntPreTrainedModel):
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
**kwargs, **kwargs,
): ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
......
...@@ -787,7 +787,7 @@ DECISION_TRANSFORMER_INPUTS_DOCSTRING = r""" ...@@ -787,7 +787,7 @@ DECISION_TRANSFORMER_INPUTS_DOCSTRING = r"""
The returns for each state in the trajectory The returns for each state in the trajectory
timesteps (`torch.LongTensor` of shape `(batch_size, episode_length)`): timesteps (`torch.LongTensor` of shape `(batch_size, episode_length)`):
The timestep for each step in the trajectory The timestep for each step in the trajectory
attention_mask (`torch.LongTensor` of shape `(batch_size, episode_length)`): attention_mask (`torch.FloatTensor` of shape `(batch_size, episode_length)`):
Masking, used to mask the actions when performing autoregressive prediction Masking, used to mask the actions when performing autoregressive prediction
""" """
...@@ -830,16 +830,16 @@ class DecisionTransformerModel(DecisionTransformerPreTrainedModel): ...@@ -830,16 +830,16 @@ class DecisionTransformerModel(DecisionTransformerPreTrainedModel):
@replace_return_docstrings(output_type=DecisionTransformerOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DecisionTransformerOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
states=None, states: Optional[torch.FloatTensor] = None,
actions=None, actions: Optional[torch.FloatTensor] = None,
rewards=None, rewards: Optional[torch.FloatTensor] = None,
returns_to_go=None, returns_to_go: Optional[torch.FloatTensor] = None,
timesteps=None, timesteps: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
) -> Union[Tuple, DecisionTransformerOutput]: ) -> Union[Tuple[torch.FloatTensor], DecisionTransformerOutput]:
r""" r"""
Returns: Returns:
......
...@@ -19,7 +19,7 @@ import copy ...@@ -19,7 +19,7 @@ import copy
import math import math
import warnings import warnings
from dataclasses import dataclass from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple from typing import Dict, List, Optional, Tuple, Union
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
...@@ -1123,7 +1123,7 @@ DEFORMABLE_DETR_INPUTS_DOCSTRING = r""" ...@@ -1123,7 +1123,7 @@ DEFORMABLE_DETR_INPUTS_DOCSTRING = r"""
[What are attention masks?](../glossary#attention-mask) [What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, num_queries)`, *optional*): decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
Not used by default. Can be used to mask object queries. Not used by default. Can be used to mask object queries.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
...@@ -1625,16 +1625,16 @@ class DeformableDetrModel(DeformableDetrPreTrainedModel): ...@@ -1625,16 +1625,16 @@ class DeformableDetrModel(DeformableDetrPreTrainedModel):
@replace_return_docstrings(output_type=DeformableDetrModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DeformableDetrModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], DeformableDetrModelOutput]:
r""" r"""
Returns: Returns:
...@@ -1885,17 +1885,17 @@ class DeformableDetrForObjectDetection(DeformableDetrPreTrainedModel): ...@@ -1885,17 +1885,17 @@ class DeformableDetrForObjectDetection(DeformableDetrPreTrainedModel):
@replace_return_docstrings(output_type=DeformableDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DeformableDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[List[dict]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], DeformableDetrObjectDetectionOutput]:
r""" r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*): labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
......
...@@ -19,7 +19,7 @@ import copy ...@@ -19,7 +19,7 @@ import copy
import math import math
import warnings import warnings
from dataclasses import dataclass from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple from typing import Dict, List, Optional, Tuple, Union
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
...@@ -1013,7 +1013,7 @@ DETA_INPUTS_DOCSTRING = r""" ...@@ -1013,7 +1013,7 @@ DETA_INPUTS_DOCSTRING = r"""
[What are attention masks?](../glossary#attention-mask) [What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, num_queries)`, *optional*): decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
Not used by default. Can be used to mask object queries. Not used by default. Can be used to mask object queries.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
...@@ -1533,16 +1533,16 @@ class DetaModel(DetaPreTrainedModel): ...@@ -1533,16 +1533,16 @@ class DetaModel(DetaPreTrainedModel):
@replace_return_docstrings(output_type=DetaModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DetaModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], DetaModelOutput]:
r""" r"""
Returns: Returns:
...@@ -1838,17 +1838,17 @@ class DetaForObjectDetection(DetaPreTrainedModel): ...@@ -1838,17 +1838,17 @@ class DetaForObjectDetection(DetaPreTrainedModel):
@replace_return_docstrings(output_type=DetaObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DetaObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[List[dict]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], DetaObjectDetectionOutput]:
r""" r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*): labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
import math import math
from dataclasses import dataclass from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple from typing import Dict, List, Optional, Tuple, Union
import torch import torch
from torch import Tensor, nn from torch import Tensor, nn
...@@ -881,7 +881,7 @@ DETR_INPUTS_DOCSTRING = r""" ...@@ -881,7 +881,7 @@ DETR_INPUTS_DOCSTRING = r"""
[What are attention masks?](../glossary#attention-mask) [What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, num_queries)`, *optional*): decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
Not used by default. Can be used to mask object queries. Not used by default. Can be used to mask object queries.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
...@@ -1245,16 +1245,16 @@ class DetrModel(DetrPreTrainedModel): ...@@ -1245,16 +1245,16 @@ class DetrModel(DetrPreTrainedModel):
@replace_return_docstrings(output_type=DetrModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DetrModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], DetrModelOutput]:
r""" r"""
Returns: Returns:
...@@ -1405,17 +1405,17 @@ class DetrForObjectDetection(DetrPreTrainedModel): ...@@ -1405,17 +1405,17 @@ class DetrForObjectDetection(DetrPreTrainedModel):
@replace_return_docstrings(output_type=DetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[List[dict]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], DetrObjectDetectionOutput]:
r""" r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*): labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
...@@ -1575,17 +1575,17 @@ class DetrForSegmentation(DetrPreTrainedModel): ...@@ -1575,17 +1575,17 @@ class DetrForSegmentation(DetrPreTrainedModel):
@replace_return_docstrings(output_type=DetrSegmentationOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=DetrSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[List[dict]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], DetrSegmentationOutput]:
r""" r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*): labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each
......
...@@ -454,9 +454,9 @@ class DPRContextEncoder(DPRPretrainedContextEncoder): ...@@ -454,9 +454,9 @@ class DPRContextEncoder(DPRPretrainedContextEncoder):
attention_mask: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
) -> Union[DPRContextEncoderOutput, Tuple[Tensor, ...]]: ) -> Union[DPRContextEncoderOutput, Tuple[Tensor, ...]]:
r""" r"""
Return: Return:
...@@ -535,9 +535,9 @@ class DPRQuestionEncoder(DPRPretrainedQuestionEncoder): ...@@ -535,9 +535,9 @@ class DPRQuestionEncoder(DPRPretrainedQuestionEncoder):
attention_mask: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
) -> Union[DPRQuestionEncoderOutput, Tuple[Tensor, ...]]: ) -> Union[DPRQuestionEncoderOutput, Tuple[Tensor, ...]]:
r""" r"""
Return: Return:
...@@ -616,9 +616,9 @@ class DPRReader(DPRPretrainedReader): ...@@ -616,9 +616,9 @@ class DPRReader(DPRPretrainedReader):
input_ids: Optional[Tensor] = None, input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = None, output_attentions: Optional[bool] = None,
output_hidden_states: bool = None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]: ) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]:
r""" r"""
Return: Return:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment