"...resnet50_tensorflow.git" did not exist on "68deb5046b5f58b36687f194163af1e0375ebfda"
Commit c999a3e5 authored by Julien Chaumond's avatar Julien Chaumond
Browse files

Allow from_pretrained to take a remote identifier

parent 29570db2
......@@ -24,7 +24,7 @@ import logging
import os
from io import open
from .file_utils import cached_path, CONFIG_NAME
from .file_utils import CONFIG_NAME, cached_path, is_remote_url, hf_bucket_url
logger = logging.getLogger(__name__)
......@@ -131,8 +131,10 @@ class PretrainedConfig(object):
config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
elif os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
else:
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
else:
config_file = hf_bucket_url(pretrained_model_name_or_path, postfix=CONFIG_NAME)
# redirect to the cache, if necessary
try:
resolved_config_file = cached_path(config_file, cache_dir=cache_dir, force_download=force_download,
......@@ -187,7 +189,7 @@ class PretrainedConfig(object):
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
"""Constructs a `Config` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
......
......@@ -73,6 +73,8 @@ TF2_WEIGHTS_NAME = 'tf_model.h5'
TF_WEIGHTS_NAME = 'model.ckpt'
CONFIG_NAME = "config.json"
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
def is_torch_available():
return _torch_available
......@@ -103,6 +105,18 @@ else:
return fn
return docstring_decorator
def is_remote_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ('http', 'https', 's3')
def hf_bucket_url(identifier, postfix=None):
if postfix is None:
return "/".join((S3_BUCKET_PREFIX, identifier))
else:
return "/".join((S3_BUCKET_PREFIX, identifier, postfix))
def url_to_filename(url, etag=None):
"""
Convert `url` into a hashed filename in a repeatable way.
......@@ -171,9 +185,7 @@ def cached_path(url_or_filename, cache_dir=None, force_download=False, proxies=N
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
parsed = urlparse(url_or_filename)
if parsed.scheme in ('http', 'https', 's3'):
if is_remote_url(url_or_filename):
# URL, so get it from the cache (downloading if necessary)
return get_from_cache(url_or_filename, cache_dir=cache_dir,
force_download=force_download, proxies=proxies,
......@@ -181,7 +193,7 @@ def cached_path(url_or_filename, cache_dir=None, force_download=False, proxies=N
elif os.path.exists(url_or_filename):
# File, and it exists.
return url_or_filename
elif parsed.scheme == '':
elif urlparse(url_or_filename).scheme == '':
# File, but it doesn't exist.
raise EnvironmentError("file {} not found".format(url_or_filename))
else:
......
......@@ -31,7 +31,8 @@ from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from .configuration_utils import PretrainedConfig
from .file_utils import cached_path, WEIGHTS_NAME, TF_WEIGHTS_NAME, TF2_WEIGHTS_NAME
from .file_utils import (TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME,
cached_path, hf_bucket_url, is_remote_url)
logger = logging.getLogger(__name__)
......@@ -363,14 +364,15 @@ class PreTrainedModel(nn.Module):
raise EnvironmentError("Error no file named {} found in directory {} or `from_tf` set to False".format(
[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
pretrained_model_name_or_path))
elif os.path.isfile(pretrained_model_name_or_path):
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
assert from_tf, "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
pretrained_model_name_or_path + ".index")
archive_file = pretrained_model_name_or_path + ".index"
else:
archive_file = pretrained_model_name_or_path
archive_file = hf_bucket_url(pretrained_model_name_or_path, postfix=WEIGHTS_NAME)
# todo do we want to support TF checkpoints here?
# redirect to the cache, if necessary
try:
......
......@@ -25,7 +25,7 @@ import itertools
import re
from io import open
from .file_utils import cached_path, is_tf_available, is_torch_available
from .file_utils import cached_path, is_remote_url, hf_bucket_url, is_tf_available, is_torch_available
if is_tf_available():
import tensorflow as tf
......@@ -327,12 +327,12 @@ class PreTrainedTokenizer(object):
if os.path.isdir(pretrained_model_name_or_path):
# If a directory is provided we look for the standard filenames
full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
else:
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
# If a path to a file is provided we use it (will only work for non-BPE tokenizer using a single vocabulary file)
full_file_name = pretrained_model_name_or_path
if not os.path.exists(full_file_name):
logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
full_file_name = None
else:
full_file_name = hf_bucket_url(pretrained_model_name_or_path, postfix=file_name)
vocab_files[file_id] = full_file_name
# Look for the additional tokens files
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment