Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
c9454507
Unverified
Commit
c9454507
authored
Aug 20, 2020
by
Denisa Roberts
Committed by
GitHub
Aug 20, 2020
Browse files
Add tests for Reformer tokenizer (#6485)
parent
f9d280a9
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
253 additions
and
0 deletions
+253
-0
tests/test_tokenization_reformer.py
tests/test_tokenization_reformer.py
+253
-0
No files found.
tests/test_tokenization_reformer.py
0 → 100644
View file @
c9454507
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
from
transformers.file_utils
import
cached_property
from
transformers.testing_utils
import
require_torch
,
slow
from
transformers.tokenization_reformer
import
SPIECE_UNDERLINE
,
ReformerTokenizer
from
.test_tokenization_common
import
TokenizerTesterMixin
SAMPLE_VOCAB
=
os
.
path
.
join
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)),
"fixtures/test_sentencepiece.model"
)
class
ReformerTokenizationTest
(
TokenizerTesterMixin
,
unittest
.
TestCase
):
tokenizer_class
=
ReformerTokenizer
def
setUp
(
self
):
super
().
setUp
()
tokenizer
=
ReformerTokenizer
(
SAMPLE_VOCAB
,
keep_accents
=
True
)
tokenizer
.
save_pretrained
(
self
.
tmpdirname
)
def
test_full_tokenizer
(
self
):
tokenizer
=
ReformerTokenizer
(
SAMPLE_VOCAB
,
keep_accents
=
True
)
tokens
=
tokenizer
.
tokenize
(
"This is a test"
)
self
.
assertListEqual
(
tokens
,
[
"▁This"
,
"▁is"
,
"▁a"
,
"▁t"
,
"est"
])
self
.
assertListEqual
(
tokenizer
.
convert_tokens_to_ids
(
tokens
),
[
285
,
46
,
10
,
170
,
382
],
)
tokens
=
tokenizer
.
tokenize
(
"I was born in 92000, and this is falsé."
)
self
.
assertListEqual
(
tokens
,
[
SPIECE_UNDERLINE
+
"I"
,
SPIECE_UNDERLINE
+
"was"
,
SPIECE_UNDERLINE
+
"b"
,
"or"
,
"n"
,
SPIECE_UNDERLINE
+
"in"
,
SPIECE_UNDERLINE
+
""
,
"9"
,
"2"
,
"0"
,
"0"
,
"0"
,
","
,
SPIECE_UNDERLINE
+
"and"
,
SPIECE_UNDERLINE
+
"this"
,
SPIECE_UNDERLINE
+
"is"
,
SPIECE_UNDERLINE
+
"f"
,
"al"
,
"s"
,
"é"
,
"."
,
],
)
ids
=
tokenizer
.
convert_tokens_to_ids
(
tokens
)
self
.
assertListEqual
(
ids
,
[
8
,
21
,
84
,
55
,
24
,
19
,
7
,
0
,
602
,
347
,
347
,
347
,
3
,
12
,
66
,
46
,
72
,
80
,
6
,
0
,
4
],
)
back_tokens
=
tokenizer
.
convert_ids_to_tokens
(
ids
)
self
.
assertListEqual
(
back_tokens
,
[
SPIECE_UNDERLINE
+
"I"
,
SPIECE_UNDERLINE
+
"was"
,
SPIECE_UNDERLINE
+
"b"
,
"or"
,
"n"
,
SPIECE_UNDERLINE
+
"in"
,
SPIECE_UNDERLINE
+
""
,
"<unk>"
,
"2"
,
"0"
,
"0"
,
"0"
,
","
,
SPIECE_UNDERLINE
+
"and"
,
SPIECE_UNDERLINE
+
"this"
,
SPIECE_UNDERLINE
+
"is"
,
SPIECE_UNDERLINE
+
"f"
,
"al"
,
"s"
,
"<unk>"
,
"."
,
],
)
@
cached_property
def
big_tokenizer
(
self
):
return
ReformerTokenizer
.
from_pretrained
(
"google/reformer-crime-and-punishment"
)
@
slow
def
test_tokenization_base_easy_symbols
(
self
):
symbols
=
"Hello World!"
original_tokenizer_encodings
=
[
126
,
32
,
262
,
152
,
38
,
72
,
287
]
self
.
assertListEqual
(
original_tokenizer_encodings
,
self
.
big_tokenizer
.
encode
(
symbols
))
@
slow
def
test_tokenization_base_hard_symbols
(
self
):
symbols
=
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
original_tokenizer_encodings
=
[
108
,
265
,
24
,
111
,
4
,
258
,
156
,
35
,
28
,
275
,
3
,
259
,
297
,
260
,
84
,
4
,
35
,
110
,
44
,
8
,
259
,
91
,
268
,
21
,
11
,
209
,
274
,
109
,
266
,
277
,
117
,
86
,
93
,
315
,
258
,
278
,
258
,
277
,
258
,
0
,
258
,
288
,
258
,
319
,
258
,
0
,
258
,
0
,
258
,
0
,
258
,
0
,
258
,
287
,
258
,
315
,
258
,
289
,
258
,
278
,
99
,
269
,
266
,
262
,
8
,
259
,
241
,
4
,
217
,
230
,
268
,
266
,
55
,
168
,
106
,
75
,
193
,
266
,
223
,
27
,
49
,
26
,
282
,
25
,
264
,
299
,
19
,
26
,
0
,
258
,
277
,
117
,
86
,
93
,
176
,
183
,
270
,
11
,
262
,
42
,
61
,
265
,
]
self
.
assertListEqual
(
original_tokenizer_encodings
,
self
.
big_tokenizer
.
encode
(
symbols
))
@
slow
@
require_torch
def
test_torch_encode_plus_sent_to_model
(
self
):
import
torch
from
transformers
import
ReformerModel
,
ReformerConfig
# Build sequence
first_ten_tokens
=
list
(
self
.
big_tokenizer
.
get_vocab
().
keys
())[:
10
]
sequence
=
" "
.
join
(
first_ten_tokens
)
encoded_sequence
=
self
.
big_tokenizer
.
encode_plus
(
sequence
,
return_tensors
=
"pt"
)
batch_encoded_sequence
=
self
.
big_tokenizer
.
batch_encode_plus
([
sequence
,
sequence
],
return_tensors
=
"pt"
)
config
=
ReformerConfig
()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
config
.
axial_pos_shape
=
encoded_sequence
[
"input_ids"
].
shape
model
=
ReformerModel
(
config
)
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert
model
.
get_input_embeddings
().
weight
.
shape
[
0
]
>=
self
.
big_tokenizer
.
vocab_size
with
torch
.
no_grad
():
model
(
**
encoded_sequence
)
model
(
**
batch_encoded_sequence
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment