Unverified Commit c8d3fa0d authored by Julien Plu's avatar Julien Plu Committed by GitHub
Browse files

Check TF ops for ONNX compliance (#10025)



* Add check-ops script

* Finish to implement check_tf_ops and start the test

* Make the test mandatory only for BERT

* Update tf_ops folder

* Remove useless classes

* Add the ONNX test for GPT2 and BART

* Add a onnxruntime slow test + better opset flexibility

* Fix test + apply style

* fix tests

* Switch min opset from 12 to 10

* Update src/transformers/file_utils.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Fix GPT2

* Remove extra shape_list usage

* Fix GPT2

* Address Morgan's comments
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>
parent 93bd2f70
......@@ -151,6 +151,16 @@ except importlib_metadata.PackageNotFoundError:
_faiss_available = False
_onnx_available = (
importlib.util.find_spec("keras2onnx") is not None and importlib.util.find_spec("onnxruntime") is not None
)
try:
_onxx_version = importlib_metadata.version("onnx")
logger.debug(f"Successfully imported onnx version {_onxx_version}")
except importlib_metadata.PackageNotFoundError:
_onnx_available = False
_scatter_available = importlib.util.find_spec("torch_scatter") is not None
try:
_scatter_version = importlib_metadata.version("torch_scatter")
......@@ -230,6 +240,10 @@ def is_tf_available():
return _tf_available
def is_onnx_available():
return _onnx_available
def is_flax_available():
return _flax_available
......
......@@ -1030,16 +1030,7 @@ class TFGPT2ForSequenceClassification(TFGPT2PreTrainedModel, TFSequenceClassific
)
- 1
)
def get_seq_element(sequence_position, input_batch):
return tf.strided_slice(
input_batch, [sequence_position, 0], [sequence_position + 1, input_batch.shape[-1]], [1, 1]
)
result = tf.map_fn(
fn=lambda t: get_seq_element(t[0], t[1]), elems=[sequence_lengths, logits], dtype="float"
)
in_logits = tf.reshape(result, [logits_shape[0], logits_shape[-1]])
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
else:
sequence_lengths = -1
logger.warning(
......@@ -1049,16 +1040,12 @@ class TFGPT2ForSequenceClassification(TFGPT2PreTrainedModel, TFSequenceClassific
loss = None
if inputs["labels"] is not None:
if input_ids is not None:
batch_size, sequence_length = shape_list(inputs["input_ids"])[:2]
else:
batch_size, sequence_length = shape_list(inputs["inputs_embeds"])[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
self.config.pad_token_id is not None or logits_shape[0] == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if not tf.is_tensor(sequence_lengths):
in_logits = logits[0:batch_size, sequence_lengths]
in_logits = logits[0 : logits_shape[0], sequence_lengths]
loss = self.compute_loss(tf.reshape(inputs["labels"], [-1]), tf.reshape(in_logits, [-1, self.num_labels]))
pooled_logits = in_logits if in_logits is not None else logits
......
......@@ -28,6 +28,7 @@ from .file_utils import (
is_datasets_available,
is_faiss_available,
is_flax_available,
is_onnx_available,
is_pandas_available,
is_scatter_available,
is_sentencepiece_available,
......@@ -160,6 +161,13 @@ def require_git_lfs(test_case):
return test_case
def require_onnx(test_case):
if not is_onnx_available():
return unittest.skip("test requires ONNX")(test_case)
else:
return test_case
def require_torch(test_case):
"""
Decorator marking a test that requires PyTorch.
......
......@@ -241,6 +241,7 @@ class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFAlbertModelTester(self)
......
......@@ -178,6 +178,8 @@ class TFBartModelTest(TFModelTesterMixin, unittest.TestCase):
all_generative_model_classes = (TFBartForConditionalGeneration,) if is_tf_available() else ()
is_encoder_decoder = True
test_pruning = False
test_onnx = True
onnx_min_opset = 10
def setUp(self):
self.model_tester = TFBartModelTester(self)
......
......@@ -274,6 +274,8 @@ class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
else ()
)
test_head_masking = False
test_onnx = True
onnx_min_opset = 10
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
......
......@@ -177,6 +177,7 @@ class TFBlenderbotModelTest(TFModelTesterMixin, unittest.TestCase):
all_generative_model_classes = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
is_encoder_decoder = True
test_pruning = False
test_onnx = False
def setUp(self):
self.model_tester = TFBlenderbotModelTester(self)
......
......@@ -179,6 +179,7 @@ class TFBlenderbotSmallModelTest(TFModelTesterMixin, unittest.TestCase):
all_generative_model_classes = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
is_encoder_decoder = True
test_pruning = False
test_onnx = False
def setUp(self):
self.model_tester = TFBlenderbotSmallModelTester(self)
......
......@@ -16,6 +16,7 @@
import copy
import inspect
import json
import os
import random
import tempfile
......@@ -24,7 +25,7 @@ from importlib import import_module
from typing import List, Tuple
from transformers import is_tf_available
from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, slow
from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_onnx, require_tf, slow
if is_tf_available():
......@@ -201,6 +202,67 @@ class TFModelTesterMixin:
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
self.assertTrue(os.path.exists(saved_model_dir))
def test_onnx_compliancy(self):
if not self.test_onnx:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
INTERNAL_OPS = [
"Assert",
"AssignVariableOp",
"EmptyTensorList",
"ReadVariableOp",
"ResourceGather",
"TruncatedNormal",
"VarHandleOp",
"VarIsInitializedOp",
]
onnx_ops = []
with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
onnx_opsets = json.load(f)["opsets"]
for i in range(1, self.onnx_min_opset + 1):
onnx_ops.extend(onnx_opsets[str(i)])
for model_class in self.all_model_classes:
model_op_names = set()
with tf.Graph().as_default() as g:
model = model_class(config)
model(model.dummy_inputs)
for op in g.get_operations():
model_op_names.add(op.node_def.op)
model_op_names = sorted(model_op_names)
incompatible_ops = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(op)
self.assertEqual(len(incompatible_ops), 0, incompatible_ops)
@require_onnx
@slow
def test_onnx_runtime_optimize(self):
if not self.test_onnx:
return
import keras2onnx
import onnxruntime
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model(model.dummy_inputs)
onnx_model = keras2onnx.convert_keras(model, model.name, target_opset=self.onnx_min_opset)
onnxruntime.InferenceSession(onnx_model.SerializeToString())
@slow
def test_saved_model_creation_extended(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
......
......@@ -239,6 +239,7 @@ class TFConvBertModelTest(TFModelTesterMixin, unittest.TestCase):
)
test_pruning = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFConvBertModelTester(self)
......
......@@ -174,6 +174,7 @@ class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel, TFCTRLForSequenceClassification) if is_tf_available() else ()
all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFCTRLModelTester(self)
......
......@@ -184,6 +184,7 @@ class TFDistilBertModelTest(TFModelTesterMixin, unittest.TestCase):
else None
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFDistilBertModelTester(self)
......
......@@ -188,6 +188,7 @@ class TFDPRModelTest(TFModelTesterMixin, unittest.TestCase):
test_missing_keys = False
test_pruning = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFDPRModelTester(self)
......
......@@ -206,6 +206,7 @@ class TFElectraModelTest(TFModelTesterMixin, unittest.TestCase):
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFElectraModelTester(self)
......
......@@ -292,6 +292,7 @@ class TFFlaubertModelTest(TFModelTesterMixin, unittest.TestCase):
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFFlaubertModelTester(self)
......
......@@ -339,6 +339,7 @@ class TFFunnelModelTest(TFModelTesterMixin, unittest.TestCase):
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFFunnelModelTester(self)
......@@ -382,6 +383,7 @@ class TFFunnelBaseModelTest(TFModelTesterMixin, unittest.TestCase):
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFFunnelModelTester(self, base=True)
......
......@@ -333,6 +333,8 @@ class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
)
all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
test_head_masking = False
test_onnx = True
onnx_min_opset = 10
def setUp(self):
self.model_tester = TFGPT2ModelTester(self)
......
......@@ -195,6 +195,8 @@ class TFLEDModelTest(TFModelTesterMixin, unittest.TestCase):
all_generative_model_classes = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
is_encoder_decoder = True
test_pruning = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFLEDModelTester(self)
......
......@@ -297,6 +297,8 @@ class TFLongformerModelTest(TFModelTesterMixin, unittest.TestCase):
if is_tf_available()
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFLongformerModelTester(self)
......
......@@ -362,6 +362,7 @@ class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFLxmertModel, TFLxmertForPreTraining) if is_tf_available() else ()
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFLxmertModelTester(self)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment