Unverified Commit c7edde1a authored by Sylvain Gugger's avatar Sylvain Gugger
Browse files

Fix quality

parent ed858f53
...@@ -902,7 +902,7 @@ class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceC ...@@ -902,7 +902,7 @@ class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
): ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -990,7 +990,7 @@ class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestion ...@@ -990,7 +990,7 @@ class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestion
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
): ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss. Labels for position (index) of the start of the labelled span for computing the token classification loss.
...@@ -1094,7 +1094,7 @@ class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassif ...@@ -1094,7 +1094,7 @@ class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
): ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
...@@ -1203,7 +1203,7 @@ class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLos ...@@ -1203,7 +1203,7 @@ class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
): ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None: if input_ids is not None:
num_choices = shape_list(input_ids)[1] num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2] seq_length = shape_list(input_ids)[2]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment