Mlflow integration callback (#8016)
* Add MLflow integration class Add integration code for MLflow in integrations.py along with the code that checks that MLflow is installed. * Add MLflowCallback import Add import of MLflowCallback in trainer.py * Handle model argument Allow the callback to handle model argument and store model config items as hyperparameters. * Log parameters to MLflow in batches MLflow cannot log more than a hundred parameters at once. Code added to split the parameters into batches of 100 items and log the batches one by one. * Fix style * Add docs on MLflow callback * Fix issue with unfinished runs The "fluent" api used in MLflow integration allows only one run to be active at any given moment. If the Trainer is disposed off and a new one is created, but the training is not finished, it will refuse to log the results when the next trainer is created. * Add MLflow integration class Add integration code for MLflow in integrations.py along with the code that checks that MLflow is installed. * Add MLflowCallback import Add import of MLflowCallback in trainer.py * Handle model argument Allow the callback to handle model argument and store model config items as hyperparameters. * Log parameters to MLflow in batches MLflow cannot log more than a hundred parameters at once. Code added to split the parameters into batches of 100 items and log the batches one by one. * Fix style * Add docs on MLflow callback * Fix issue with unfinished runs The "fluent" api used in MLflow integration allows only one run to be active at any given moment. If the Trainer is disposed off and a new one is created, but the training is not finished, it will refuse to log the results when the next trainer is created.
Showing
Please register or sign in to comment