Unverified Commit c20b2c7e authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Use repo_type instead of deprecated datasets repo IDs (#19202)

* Use repo_type instead of deprecated datasets repo IDs

* Add missing one in doc
parent 216b2f9e
...@@ -128,7 +128,7 @@ def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folde ...@@ -128,7 +128,7 @@ def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folde
encoder_only = False encoder_only = False
# set attributes based on model_name # set attributes based on model_name
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
if "segformer" in model_name: if "segformer" in model_name:
size = model_name[len("segformer.") : len("segformer.") + 2] size = model_name[len("segformer.") : len("segformer.") + 2]
if "ade" in model_name: if "ade" in model_name:
...@@ -151,7 +151,7 @@ def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folde ...@@ -151,7 +151,7 @@ def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folde
raise ValueError(f"Model {model_name} not supported") raise ValueError(f"Model {model_name} not supported")
# set config attributes # set config attributes
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
......
...@@ -39,9 +39,9 @@ def get_swin_config(swin_name): ...@@ -39,9 +39,9 @@ def get_swin_config(swin_name):
num_classes = 21841 num_classes = 21841
else: else:
num_classes = 1000 num_classes = 1000
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json" filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
......
...@@ -63,18 +63,18 @@ def get_swinv2_config(swinv2_name): ...@@ -63,18 +63,18 @@ def get_swinv2_config(swinv2_name):
if ("22k" in swinv2_name) and ("to" not in swinv2_name): if ("22k" in swinv2_name) and ("to" not in swinv2_name):
num_classes = 21841 num_classes = 21841
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
filename = "imagenet-22k-id2label.json" filename = "imagenet-22k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
else: else:
num_classes = 1000 num_classes = 1000
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json" filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
......
...@@ -168,9 +168,9 @@ def convert_weights_and_push(save_directory: Path, model_name: str = None, push_ ...@@ -168,9 +168,9 @@ def convert_weights_and_push(save_directory: Path, model_name: str = None, push_
filename = "imagenet-1k-id2label.json" filename = "imagenet-1k-id2label.json"
num_labels = 1000 num_labels = 1000
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
num_labels = num_labels num_labels = num_labels
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
id2label = id2label id2label = id2label
......
...@@ -47,7 +47,7 @@ def get_videomae_config(model_name): ...@@ -47,7 +47,7 @@ def get_videomae_config(model_name):
config.use_mean_pooling = False config.use_mean_pooling = False
if "finetuned" in model_name: if "finetuned" in model_name:
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
if "kinetics" in model_name: if "kinetics" in model_name:
config.num_labels = 400 config.num_labels = 400
filename = "kinetics400-id2label.json" filename = "kinetics400-id2label.json"
...@@ -56,7 +56,7 @@ def get_videomae_config(model_name): ...@@ -56,7 +56,7 @@ def get_videomae_config(model_name):
filename = "something-something-v2-id2label.json" filename = "something-something-v2-id2label.json"
else: else:
raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.") raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.")
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
...@@ -145,7 +145,9 @@ def convert_state_dict(orig_state_dict, config): ...@@ -145,7 +145,9 @@ def convert_state_dict(orig_state_dict, config):
# We will verify our results on a video of eating spaghetti # We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video(): def prepare_video():
file = hf_hub_download(repo_id="datasets/hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy") file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset"
)
video = np.load(file) video = np.load(file)
return list(video) return list(video)
......
...@@ -180,9 +180,9 @@ def convert_vilt_checkpoint(checkpoint_url, pytorch_dump_folder_path): ...@@ -180,9 +180,9 @@ def convert_vilt_checkpoint(checkpoint_url, pytorch_dump_folder_path):
if "vqa" in checkpoint_url: if "vqa" in checkpoint_url:
vqa_model = True vqa_model = True
config.num_labels = 3129 config.num_labels = 3129
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
filename = "vqa2-id2label.json" filename = "vqa2-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
......
...@@ -142,9 +142,9 @@ def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True ...@@ -142,9 +142,9 @@ def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True
# set labels if required # set labels if required
if not base_model: if not base_model:
config.num_labels = 1000 config.num_labels = 1000
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json" filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
......
...@@ -147,9 +147,9 @@ def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path): ...@@ -147,9 +147,9 @@ def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):
config.image_size = int(vit_name[-9:-6]) config.image_size = int(vit_name[-9:-6])
else: else:
config.num_labels = 1000 config.num_labels = 1000
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json" filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
......
...@@ -207,8 +207,9 @@ def prepare_video(num_frames): ...@@ -207,8 +207,9 @@ def prepare_video(num_frames):
elif num_frames == 32: elif num_frames == 32:
filename = "eating_spaghetti_32_frames.npy" filename = "eating_spaghetti_32_frames.npy"
file = hf_hub_download( file = hf_hub_download(
repo_id="datasets/hf-internal-testing/spaghetti-video", repo_id="hf-internal-testing/spaghetti-video",
filename=filename, filename=filename,
repo_type="dataset",
) )
video = np.load(file) video = np.load(file)
return list(video) return list(video)
......
...@@ -57,9 +57,9 @@ def get_yolos_config(yolos_name): ...@@ -57,9 +57,9 @@ def get_yolos_config(yolos_name):
config.image_size = [800, 1344] config.image_size = [800, 1344]
config.num_labels = 91 config.num_labels = 91
repo_id = "datasets/huggingface/label-files" repo_id = "huggingface/label-files"
filename = "coco-detection-id2label.json" filename = "coco-detection-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()} id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()} config.label2id = {v: k for k, v in id2label.items()}
......
...@@ -342,7 +342,9 @@ class VideoMAEModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -342,7 +342,9 @@ class VideoMAEModelTest(ModelTesterMixin, unittest.TestCase):
# We will verify our results on a video of eating spaghetti # We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video(): def prepare_video():
file = hf_hub_download(repo_id="datasets/hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy") file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset"
)
video = np.load(file) video = np.load(file)
return list(video) return list(video)
......
...@@ -633,7 +633,7 @@ class XCLIPModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -633,7 +633,7 @@ class XCLIPModelTest(ModelTesterMixin, unittest.TestCase):
# We will verify our results on a spaghetti video # We will verify our results on a spaghetti video
def prepare_video(): def prepare_video():
file = hf_hub_download( file = hf_hub_download(
repo_id="datasets/hf-internal-testing/spaghetti-video", filename="eating_spaghetti_8_frames.npy" repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_8_frames.npy", repo_type="dataset"
) )
video = np.load(file) video = np.load(file)
return list(video) return list(video)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment