Unverified Commit c130e67d authored by Suraj Patil's avatar Suraj Patil Committed by GitHub
Browse files

remove adjust_logits_during_generation method (#10087)

* add forced logits processors

* delete adjust_logits method

* add forced_eos_token_id argument in config

* add tests for forced logits processors

* update gen utils tests

* add forced option to tf generate

* remove adjust_logits method from tf models

* update adjust_logits for marian

* delete _force_token_id_to_be_generated method

* style

* import warnings

* pass max_length to _get_logits_processor

* set forced_eos_token_id to None

* set forced attributes in conf utils

* typo

* fix rag generate

* add forced_eos_token_id in rag config

* remove force_bos_token_to_be_generated from BartConfig

* remove _force_token_ids_generation from FSMT

* nit

* fix negative constant

* apply suggestions from code review
parent 22a32cf4
......@@ -131,6 +131,11 @@ class PretrainedConfig(object):
logits when used for generation
- **return_dict_in_generate** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether the model should
return a :class:`~transformers.file_utils.ModelOutput` instead of a :obj:`torch.LongTensor`
- **forced_bos_token_id** (:obj:`int`, `optional`) -- The id of the token to force as the first generated token
after the :obj:`decoder_start_token_id`. Useful for multilingual models like :doc:`mBART
<../model_doc/mbart>` where the first generated token needs to be the target language token.
- **forced_eos_token_id** (:obj:`int`, `optional`) -- The id of the token to force as the last generated token
when :obj:`max_length` is reached.
Parameters for fine-tuning tasks
......@@ -214,6 +219,8 @@ class PretrainedConfig(object):
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
self.output_scores = kwargs.pop("output_scores", False)
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False)
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)
# Fine-tuning task arguments
self.architectures = kwargs.pop("architectures", None)
......
......@@ -520,3 +520,49 @@ class HammingDiversityLogitsProcessor(LogitsProcessor):
scores[batch_idx * group_size : (batch_idx + 1) * group_size] -= self._diversity_penalty * token_frequency
return scores
class ForcedBOSTokenLogitsProcessor(LogitsProcessor):
r"""
:class:`~transformers.LogitsProcessor` that enforces the specified token as the first generated token.
Args:
bos_token_id (:obj:`int`):
The id of the token to force as the first generated token.
"""
def __init__(self, bos_token_id: int):
self.bos_token_id = bos_token_id
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len == 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i != self.bos_token_id]] = -float("inf")
scores[:, self.bos_token_id] = 0
return scores
class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
r"""
:class:`~transformers.LogitsProcessor` that enforces the specified token as the last generated token when
:obj:`max_length` is reached.
Args:
max_length (:obj:`int`):
The maximum length of the sequence to be generated.
eos_token_id (:obj:`int`):
The id of the token to force as the last generated token when :obj:`max_length` is reached.
"""
def __init__(self, max_length: int, eos_token_id: int):
self.max_length = max_length
self.eos_token_id = eos_token_id
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len == self.max_length - 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i != self.eos_token_id]] = -float("inf")
scores[:, self.eos_token_id] = 0
return scores
......@@ -67,6 +67,8 @@ class TFGenerationMixin:
attention_mask=None,
decoder_start_token_id=None,
use_cache=None,
forced_bos_token_id=None,
forced_eos_token_id=None,
):
r"""
Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
......@@ -137,6 +139,12 @@ class TFGenerationMixin:
use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
speed up decoding.
forced_bos_token_id (:obj:`int`, `optional`):
The id of the token to force as the first generated token after the :obj:`decoder_start_token_id`.
Useful for multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token
needs to be the target language token.
forced_eos_token_id (:obj:`int`, `optional`):
The id of the token to force as the last generated token when :obj:`max_length` is reached.
model_specific_kwargs:
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model.
......@@ -214,6 +222,12 @@ class TFGenerationMixin:
decoder_start_token_id = (
decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
)
forced_bos_token_id = (
forced_bos_token_id if forced_bos_token_id is not None else self.config.forced_bos_token_id
)
forced_eos_token_id = (
forced_eos_token_id if forced_eos_token_id is not None else self.config.forced_eos_token_id
)
if input_ids is not None:
batch_size = shape_list(input_ids)[0] # overridden by the input batch_size
......@@ -380,6 +394,8 @@ class TFGenerationMixin:
encoder_outputs=encoder_outputs,
attention_mask=attention_mask,
use_cache=use_cache,
forced_bos_token_id=forced_bos_token_id,
forced_eos_token_id=forced_eos_token_id,
)
else:
output = self._generate_no_beam_search(
......@@ -591,6 +607,8 @@ class TFGenerationMixin:
encoder_outputs,
attention_mask,
use_cache,
forced_bos_token_id,
forced_eos_token_id,
):
"""Generate sequences for each example with beam search."""
......@@ -641,7 +659,11 @@ class TFGenerationMixin:
if self.config.is_encoder_decoder and do_sample is False:
next_token_logits = self.adjust_logits_during_generation(
next_token_logits, cur_len=cur_len, max_length=max_length
next_token_logits,
cur_len=cur_len,
max_length=max_length,
forced_bos_token_id=forced_bos_token_id,
forced_eos_token_id=forced_eos_token_id,
)
# calculate log softmax score
scores = tf.nn.log_softmax(next_token_logits, axis=-1) # (batch_size * num_beams, vocab_size)
......@@ -893,11 +915,20 @@ class TFGenerationMixin:
def _reorder_cache(past, beam_idx):
return tuple(tf.gather(layer_past, beam_idx, axis=1) for layer_past in past)
def adjust_logits_during_generation(self, logits, **kwargs):
def adjust_logits_during_generation(
self, logits, cur_len, max_length, forced_bos_token_id, forced_eos_token_id, **kwargs
):
"""
Implement in subclasses of :class:`~transformers.PreTrainedModel` for custom behavior to adjust the logits in
the generate method.
"""
if cur_len == 1 and forced_bos_token_id is not None:
vocab_range = tf.constant(range(self.config.vocab_size))
return tf.where(vocab_range != forced_bos_token_id, -1e8, logits)
elif cur_len == max_length - 1 and forced_eos_token_id is not None:
vocab_range = tf.constant(range(self.config.vocab_size))
return tf.where(vocab_range != forced_eos_token_id, -1e8, logits)
else:
return logits
......
......@@ -24,6 +24,8 @@ from .file_utils import ModelOutput
from .generation_beam_search import BeamScorer, BeamSearchScorer
from .generation_logits_process import (
EncoderNoRepeatNGramLogitsProcessor,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
HammingDiversityLogitsProcessor,
LogitsProcessorList,
MinLengthLogitsProcessor,
......@@ -542,7 +544,10 @@ class GenerationMixin:
encoder_input_ids: torch.LongTensor,
bad_words_ids: List[List[int]],
min_length: int,
max_length: int,
eos_token_id: int,
forced_bos_token_id: int,
forced_eos_token_id: int,
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
num_beams: int,
num_beam_groups: int,
......@@ -567,6 +572,12 @@ class GenerationMixin:
min_length = min_length if min_length is not None else self.config.min_length
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
diversity_penalty = diversity_penalty if diversity_penalty is not None else self.config.diversity_penalty
forced_bos_token_id = (
forced_bos_token_id if forced_bos_token_id is not None else self.config.forced_bos_token_id
)
forced_eos_token_id = (
forced_eos_token_id if forced_eos_token_id is not None else self.config.forced_eos_token_id
)
# instantiate processors list
processors = LogitsProcessorList()
......@@ -595,6 +606,10 @@ class GenerationMixin:
processors.append(MinLengthLogitsProcessor(min_length, eos_token_id))
if prefix_allowed_tokens_fn is not None:
processors.append(PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn, num_beams))
if forced_bos_token_id is not None:
processors.append(ForcedBOSTokenLogitsProcessor(forced_bos_token_id))
if forced_eos_token_id is not None:
processors.append(ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id))
return processors
@torch.no_grad()
......@@ -627,6 +642,8 @@ class GenerationMixin:
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
forced_bos_token_id: Optional[int] = None,
forced_eos_token_id: Optional[int] = None,
**model_kwargs,
) -> Union[GreedySearchOutput, SampleOutput, BeamSearchOutput, BeamSampleOutput, torch.LongTensor]:
r"""
......@@ -720,6 +737,12 @@ class GenerationMixin:
Whether or not to return the prediction scores. See ``scores`` under returned tensors for more details.
return_dict_in_generate (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
forced_bos_token_id (:obj:`int`, `optional`):
The id of the token to force as the first generated token after the :obj:`decoder_start_token_id`.
Useful for multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token
needs to be the target language token.
forced_eos_token_id (:obj:`int`, `optional`):
The id of the token to force as the last generated token when :obj:`max_length` is reached.
model_kwargs:
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model. If the
......@@ -888,7 +911,10 @@ class GenerationMixin:
encoder_input_ids=encoder_input_ids,
bad_words_ids=bad_words_ids,
min_length=min_length,
max_length=max_length,
eos_token_id=eos_token_id,
forced_bos_token_id=forced_bos_token_id,
forced_eos_token_id=forced_eos_token_id,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
num_beams=num_beams,
num_beam_groups=num_beam_groups,
......@@ -1611,7 +1637,8 @@ class GenerationMixin:
)
next_token_logits = outputs.logits[:, -1, :]
# adjust tokens for Bart, *e.g.*
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
# cannot be generated both before and after the `F.log_softmax` operation.
next_token_logits = self.adjust_logits_during_generation(
next_token_logits, cur_len=cur_len, max_length=max_length
)
......@@ -1866,7 +1893,8 @@ class GenerationMixin:
)
next_token_logits = outputs.logits[:, -1, :]
# adjust token scores (a no-op by default)
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
# cannot be generated both before and after the `F.log_softmax` operation.
next_token_logits = self.adjust_logits_during_generation(
next_token_logits, cur_len=cur_len, max_length=max_length
)
......@@ -2150,7 +2178,8 @@ class GenerationMixin:
# select outputs of beams of current group only
next_token_logits = outputs.logits[batch_group_indices, -1, :]
# adjust tokens for Bart, *e.g.*
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
# cannot be generated both before and after the `F.log_softmax` operation.
next_token_logits = self.adjust_logits_during_generation(
next_token_logits, cur_len=cur_len, max_length=max_length
)
......
......@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" BART model configuration """
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
......@@ -72,9 +73,6 @@ class BartConfig(PretrainedConfig):
just in case (e.g., 512 or 1024 or 2048).
init_std (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
force_bos_token_to_be_generated (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force BOS token to be generated at step 1 (after ``decoder_start_token_id``), only
:obj:`True` for `bart-large-cnn`.
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
The LayerDrop probability for the encoder. See the `LayerDrop paper <see
https://arxiv.org/abs/1909.11556>`__ for more details.
......@@ -89,6 +87,9 @@ class BartConfig(PretrainedConfig):
Whether or not the model should return the last key/values attentions (not used by all models).
num_labels: (:obj:`int`, `optional`, defaults to 3):
The number of labels to use in :class:`~transformers.BartForSequenceClassification`.
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
:obj:`eos_token_id`.
Example::
......@@ -127,7 +128,6 @@ class BartConfig(PretrainedConfig):
classifier_dropout=0.0,
scale_embedding=False,
gradient_checkpointing=False,
force_bos_token_to_be_generated=False,
use_cache=True,
num_labels=3,
pad_token_id=1,
......@@ -135,6 +135,7 @@ class BartConfig(PretrainedConfig):
eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2,
**kwargs
):
super().__init__(
......@@ -144,6 +145,7 @@ class BartConfig(PretrainedConfig):
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
......@@ -168,7 +170,14 @@ class BartConfig(PretrainedConfig):
self.num_hidden_layers = encoder_layers
self.gradient_checkpointing = gradient_checkpointing
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.force_bos_token_to_be_generated = force_bos_token_to_be_generated # only relevant for CNN
# ensure backward compatibilty for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
"The config can simply be saved and uploaded again to be fixed."
)
@property
def num_attention_heads(self) -> int:
......
......@@ -1344,18 +1344,6 @@ class BartForConditionalGeneration(BartPretrainedModel):
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == 1 and self.config.force_bos_token_to_be_generated:
self._force_token_id_to_be_generated(logits, self.config.bos_token_id)
elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
@staticmethod
def _force_token_id_to_be_generated(scores, token_id) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
scores[:, [x for x in range(scores.shape[1]) if x != token_id]] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
......
......@@ -1444,13 +1444,3 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
+ layer_past_key_values[2:],
)
return (past[0], reordered_past)
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == 1 and self.config.force_bos_token_to_be_generated:
vocab_range = tf.constant(range(self.config.vocab_size))
return tf.where(vocab_range != self.config.bos_token_id, LARGE_NEGATIVE, logits)
elif cur_len == max_length - 1:
vocab_range = tf.constant(range(self.config.vocab_size))
return tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
......@@ -84,6 +84,9 @@ class BlenderbotConfig(PretrainedConfig):
Scale embeddings by diving by sqrt(d_model).
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
:obj:`eos_token_id`.
Example::
......@@ -129,6 +132,7 @@ class BlenderbotConfig(PretrainedConfig):
bos_token_id=1,
eos_token_id=2,
encoder_no_repeat_ngram_size=3,
forced_eos_token_id=2,
**kwargs
):
super().__init__(
......@@ -138,6 +142,7 @@ class BlenderbotConfig(PretrainedConfig):
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
encoder_no_repeat_ngram_size=encoder_no_repeat_ngram_size,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
......
......@@ -1335,16 +1335,6 @@ class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
@staticmethod
def _force_token_id_to_be_generated(scores, token_id) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
scores[:, [x for x in range(scores.shape[1]) if x != token_id]] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
......
......@@ -1477,10 +1477,3 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
+ layer_past_key_values[2:],
)
return (past[0], reordered_past)
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == max_length - 1:
vocab_range = tf.constant(range(self.config.vocab_size))
return tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
......@@ -84,6 +84,9 @@ class BlenderbotSmallConfig(PretrainedConfig):
Scale embeddings by diving by sqrt(d_model).
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
:obj:`eos_token_id`.
Example::
......@@ -128,6 +131,7 @@ class BlenderbotSmallConfig(PretrainedConfig):
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
forced_eos_token_id=2,
**kwargs
):
super().__init__(
......@@ -136,6 +140,7 @@ class BlenderbotSmallConfig(PretrainedConfig):
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
......
......@@ -1310,16 +1310,6 @@ class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel):
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
@staticmethod
def _force_token_id_to_be_generated(scores, token_id) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
scores[:, [x for x in range(scores.shape[1]) if x != token_id]] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
......
......@@ -1452,10 +1452,3 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
+ layer_past_key_values[2:],
)
return (past[0], reordered_past)
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == max_length - 1:
vocab_range = tf.constant(range(self.config.vocab_size))
return tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
......@@ -111,6 +111,9 @@ class FSMTConfig(PretrainedConfig):
search when at least ``num_beams`` sentences are finished per batch or not.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
:obj:`eos_token_id`.
Examples::
......@@ -155,6 +158,7 @@ class FSMTConfig(PretrainedConfig):
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
forced_eos_token_id=2,
**common_kwargs
):
if "hidden_size" in common_kwargs:
......@@ -166,6 +170,7 @@ class FSMTConfig(PretrainedConfig):
decoder_start_token_id=decoder_start_token_id,
is_encoder_decoder=is_encoder_decoder,
tie_word_embeddings=tie_word_embeddings,
forced_eos_token_id=forced_eos_token_id,
**common_kwargs,
)
self.langs = langs
......
......@@ -1210,23 +1210,6 @@ class FSMTForConditionalGeneration(PretrainedFSMTModel):
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_ids_generation(logits, self.config.eos_token_id)
return logits
def _force_token_ids_generation(self, scores, token_ids) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0"""
if isinstance(token_ids, int):
token_ids = [token_ids]
all_but_token_ids_mask = torch.tensor(
[x for x in range(self.config.tgt_vocab_size) if x not in token_ids],
dtype=torch.long,
device=next(self.parameters()).device,
)
assert len(scores.shape) == 2, "scores should be of rank 2 with shape: [batch_size, vocab_size]"
scores[:, all_but_token_ids_mask] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = []
......
......@@ -84,6 +84,9 @@ class MarianConfig(PretrainedConfig):
Scale embeddings by diving by sqrt(d_model).
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (:obj:`int`, `optional`, defaults to 0):
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
:obj:`eos_token_id`.
Examples::
......@@ -127,6 +130,7 @@ class MarianConfig(PretrainedConfig):
gradient_checkpointing=False,
pad_token_id=58100,
eos_token_id=0,
forced_eos_token_id=0,
**kwargs
):
super().__init__(
......@@ -134,6 +138,7 @@ class MarianConfig(PretrainedConfig):
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
......
......@@ -1325,15 +1325,8 @@ class MarianMTModel(MarianPreTrainedModel):
def adjust_logits_during_generation(self, logits, cur_len, max_length):
logits[:, self.config.pad_token_id] = float("-inf") # never predict pad token.
if cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
@staticmethod
def _force_token_id_to_be_generated(scores, token_id) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
scores[:, [x for x in range(scores.shape[1]) if x != token_id]] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
......
......@@ -1470,10 +1470,17 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
)
return (past[0], reordered_past)
def adjust_logits_during_generation(self, logits, cur_len, max_length):
def adjust_logits_during_generation(
self, logits, cur_len, max_length, forced_bos_token_id, forced_eos_token_id, **kwargs
):
"""Never predict pad_token_id. Predict </s> when max_length is reached."""
vocab_range = tf.constant(range(self.config.vocab_size))
logits = tf.where(vocab_range == self.config.pad_token_id, LARGE_NEGATIVE, logits)
if cur_len == max_length - 1:
logits = tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
if cur_len == 1 and forced_bos_token_id is not None:
vocab_range = tf.constant(range(self.config.vocab_size))
return tf.where(vocab_range != forced_bos_token_id, LARGE_NEGATIVE, logits)
elif cur_len == max_length - 1 and forced_eos_token_id is not None:
vocab_range = tf.constant(range(self.config.vocab_size))
return tf.where(vocab_range != forced_eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
......@@ -84,6 +84,9 @@ class MBartConfig(PretrainedConfig):
Scale embeddings by diving by sqrt(d_model).
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
:obj:`eos_token_id`.
Example::
......@@ -127,6 +130,7 @@ class MBartConfig(PretrainedConfig):
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
forced_eos_token_id=2,
**kwargs
):
super().__init__(
......@@ -134,6 +138,7 @@ class MBartConfig(PretrainedConfig):
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
......
......@@ -1344,16 +1344,6 @@ class MBartForConditionalGeneration(MBartPreTrainedModel):
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
@staticmethod
def _force_token_id_to_be_generated(scores, token_id) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
scores[:, [x for x in range(scores.shape[1]) if x != token_id]] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment