Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
beb03ec6
Commit
beb03ec6
authored
Aug 06, 2019
by
wangfei
Browse files
Fix examples of loading pretrained models in docstring
parent
4fc9f9ef
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
141 additions
and
176 deletions
+141
-176
pytorch_transformers/modeling_bert.py
pytorch_transformers/modeling_bert.py
+46
-61
pytorch_transformers/modeling_gpt2.py
pytorch_transformers/modeling_gpt2.py
+17
-20
pytorch_transformers/modeling_openai.py
pytorch_transformers/modeling_openai.py
+17
-20
pytorch_transformers/modeling_transfo_xl.py
pytorch_transformers/modeling_transfo_xl.py
+10
-12
pytorch_transformers/modeling_xlm.py
pytorch_transformers/modeling_xlm.py
+23
-29
pytorch_transformers/modeling_xlnet.py
pytorch_transformers/modeling_xlnet.py
+28
-34
No files found.
pytorch_transformers/modeling_bert.py
View file @
beb03ec6
...
...
@@ -643,12 +643,11 @@ class BertModel(BertPreTrainedModel):
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertModel.from_pretrained('bert-base-uncased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def
__init__
(
self
,
config
):
...
...
@@ -754,13 +753,11 @@ class BertForPreTraining(BertPreTrainedModel):
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForPreTraining(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
prediction_scores, seq_relationship_scores = outputs[:2]
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores, seq_relationship_scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -824,13 +821,11 @@ class BertForMaskedLM(BertPreTrainedModel):
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMaskedLM(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForMaskedLM.from_pretrained('bert-base-uncased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, masked_lm_labels=input_ids)
>>> loss, prediction_scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -891,13 +886,11 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForNextSentencePrediction(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
seq_relationship_scores = outputs[0]
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> seq_relationship_scores = outputs[0]
"""
def
__init__
(
self
,
config
):
...
...
@@ -951,14 +944,12 @@ class BertForSequenceClassification(BertPreTrainedModel):
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, logits = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -1057,15 +1048,13 @@ class BertForMultipleChoice(BertPreTrainedModel):
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMultipleChoice(config)
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, classification_scores = outputs[:2]
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
>>> choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, classification_scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -1127,14 +1116,12 @@ class BertForTokenClassification(BertPreTrainedModel):
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForTokenClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, scores = outputs[:2]
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForTokenClassification.from_pretrained('bert-base-uncased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -1203,15 +1190,13 @@ class BertForQuestionAnswering(BertPreTrainedModel):
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:2]
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss, start_scores, end_scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_gpt2.py
View file @
beb03ec6
...
...
@@ -433,12 +433,11 @@ class GPT2Model(GPT2PreTrainedModel):
Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2Model.from_pretrained('gpt2')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def
__init__
(
self
,
config
):
...
...
@@ -567,12 +566,11 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2LMHeadModel.from_pretrained('gpt2')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=input_ids)
>>> loss, logits = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -683,14 +681,13 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2DoubleHeadsModel(config)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, mc_token_ids)
lm_prediction_scores, mc_prediction_scores = outputs[:2]
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, mc_token_ids)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_openai.py
View file @
beb03ec6
...
...
@@ -439,12 +439,11 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>> model = OpenAIGPTModel.from_pretrained('openai-gpt')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def
__init__
(
self
,
config
):
...
...
@@ -558,12 +557,11 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTLMHeadModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>> model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=input_ids)
>>> loss, logits = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -665,14 +663,13 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTDoubleHeadsModel(config)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, mc_token_ids)
lm_prediction_scores, mc_prediction_scores = outputs[:2]
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>> model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, mc_token_ids)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_transfo_xl.py
View file @
beb03ec6
...
...
@@ -968,12 +968,11 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
Examples::
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states, mems = outputs[:2]
>>> tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
>>> model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states, mems = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -1284,12 +1283,11 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
Examples::
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLLMHeadModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
prediction_scores, mems = outputs[:2]
>>> tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
>>> model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores, mems = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_xlm.py
View file @
beb03ec6
...
...
@@ -472,12 +472,11 @@ class XLMModel(XLMPreTrainedModel):
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>> model = XLMModel.from_pretrained('xlm-mlm-en-2048')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
ATTRIBUTES
=
[
'encoder'
,
'eos_index'
,
'pad_index'
,
# 'with_output',
...
...
@@ -745,12 +744,11 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMWithLMHeadModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>> model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def
__init__
(
self
,
config
):
...
...
@@ -805,14 +803,12 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>> model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, logits = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -885,15 +881,13 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:2]
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>> model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss, start_scores, end_scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_xlnet.py
View file @
beb03ec6
...
...
@@ -712,12 +712,11 @@ class XLNetModel(XLNetPreTrainedModel):
Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>> model = XLNetModel.from_pretrained('xlnet-large-cased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def
__init__
(
self
,
config
):
...
...
@@ -1019,17 +1018,16 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetLMHeadModel(config)
# We show how to setup inputs to predict a next token using a bi-directional context.
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>> model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
"""
def
__init__
(
self
,
config
):
...
...
@@ -1100,14 +1098,12 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>> model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, logits = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
@@ -1200,15 +1196,13 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:2]
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>> model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss, start_scores, end_scores = outputs[:2]
"""
def
__init__
(
self
,
config
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment