Unverified Commit be51c103 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Add forgotten return_dict argument in the docs (#7483)

parent 48f23f92
......@@ -89,7 +89,7 @@ of each other. The process is the following:
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-mrpc")
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-mrpc", return_dict=True)
>>> classes = ["not paraphrase", "is paraphrase"]
......@@ -122,7 +122,7 @@ of each other. The process is the following:
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
>>> model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-mrpc")
>>> model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-mrpc", return_dict=True)
>>> classes = ["not paraphrase", "is paraphrase"]
......@@ -213,7 +213,7 @@ Here is an example of question answering using a model and a tokenizer. The proc
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
>>> model = AutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
>>> model = AutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad", return_dict=True)
>>> text = r"""
... 🤗 Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides general-purpose
......@@ -255,7 +255,7 @@ Here is an example of question answering using a model and a tokenizer. The proc
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad", return_dict=True)
>>> text = r"""
... 🤗 Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides general-purpose
......@@ -378,7 +378,7 @@ Here is an example of doing masked language modeling using a model and a tokeniz
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
>>> model = AutoModelWithLMHead.from_pretrained("distilbert-base-cased")
>>> model = AutoModelWithLMHead.from_pretrained("distilbert-base-cased", return_dict=True)
>>> sequence = f"Distilled models are smaller than the models they mimic. Using them instead of the large versions would help {tokenizer.mask_token} our carbon footprint."
......@@ -394,7 +394,7 @@ Here is an example of doing masked language modeling using a model and a tokeniz
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
>>> model = TFAutoModelWithLMHead.from_pretrained("distilbert-base-cased")
>>> model = TFAutoModelWithLMHead.from_pretrained("distilbert-base-cased", return_dict=True)
>>> sequence = f"Distilled models are smaller than the models they mimic. Using them instead of the large versions would help {tokenizer.mask_token} our carbon footprint."
......@@ -439,7 +439,7 @@ Here is an example of using the tokenizer and model and leveraging the :func:`~t
>>> from torch.nn import functional as F
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelWithLMHead.from_pretrained("gpt2")
>>> model = AutoModelWithLMHead.from_pretrained("gpt2", return_dict=True)
>>> sequence = f"Hugging Face is based in DUMBO, New York City, and "
......@@ -463,7 +463,7 @@ Here is an example of using the tokenizer and model and leveraging the :func:`~t
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = TFAutoModelWithLMHead.from_pretrained("gpt2")
>>> model = TFAutoModelWithLMHead.from_pretrained("gpt2", return_dict=True)
>>> sequence = f"Hugging Face is based in DUMBO, New York City, and "
......@@ -517,7 +517,7 @@ Here is an example of text generation using ``XLNet`` and its tokenzier.
>>> ## PYTORCH CODE
>>> from transformers import AutoModelWithLMHead, AutoTokenizer
>>> model = AutoModelWithLMHead.from_pretrained("xlnet-base-cased")
>>> model = AutoModelWithLMHead.from_pretrained("xlnet-base-cased", return_dict=True)
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
>>> # Padding text helps XLNet with short prompts - proposed by Aman Rusia in https://github.com/rusiaaman/XLNet-gen#methodology
......@@ -542,7 +542,7 @@ Here is an example of text generation using ``XLNet`` and its tokenzier.
>>> ## TENSORFLOW CODE
>>> from transformers import TFAutoModelWithLMHead, AutoTokenizer
>>> model = TFAutoModelWithLMHead.from_pretrained("xlnet-base-cased")
>>> model = TFAutoModelWithLMHead.from_pretrained("xlnet-base-cased", return_dict=True)
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
>>> # Padding text helps XLNet with short prompts - proposed by Aman Rusia in https://github.com/rusiaaman/XLNet-gen#methodology
......@@ -659,7 +659,7 @@ Here is an example of doing named entity recognition, using a model and a tokeni
>>> from transformers import AutoModelForTokenClassification, AutoTokenizer
>>> import torch
>>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english", return_dict=True)
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> label_list = [
......@@ -687,7 +687,7 @@ Here is an example of doing named entity recognition, using a model and a tokeni
>>> from transformers import TFAutoModelForTokenClassification, AutoTokenizer
>>> import tensorflow as tf
>>> model = TFAutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> model = TFAutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english", return_dict=True)
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> label_list = [
......@@ -781,7 +781,7 @@ In this example we use Google`s T5 model. Even though it was pre-trained only on
>>> ## PYTORCH CODE
>>> from transformers import AutoModelWithLMHead, AutoTokenizer
>>> model = AutoModelWithLMHead.from_pretrained("t5-base")
>>> model = AutoModelWithLMHead.from_pretrained("t5-base", return_dict=True)
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> # T5 uses a max_length of 512 so we cut the article to 512 tokens.
......@@ -790,7 +790,7 @@ In this example we use Google`s T5 model. Even though it was pre-trained only on
>>> ## TENSORFLOW CODE
>>> from transformers import TFAutoModelWithLMHead, AutoTokenizer
>>> model = TFAutoModelWithLMHead.from_pretrained("t5-base")
>>> model = TFAutoModelWithLMHead.from_pretrained("t5-base", return_dict=True)
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> # T5 uses a max_length of 512 so we cut the article to 512 tokens.
......@@ -834,7 +834,7 @@ Here is an example of doing translation using a model and a tokenizer. The proce
>>> ## PYTORCH CODE
>>> from transformers import AutoModelWithLMHead, AutoTokenizer
>>> model = AutoModelWithLMHead.from_pretrained("t5-base")
>>> model = AutoModelWithLMHead.from_pretrained("t5-base", return_dict=True)
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> inputs = tokenizer.encode("translate English to German: Hugging Face is a technology company based in New York and Paris", return_tensors="pt")
......@@ -842,7 +842,7 @@ Here is an example of doing translation using a model and a tokenizer. The proce
>>> ## TENSORFLOW CODE
>>> from transformers import TFAutoModelWithLMHead, AutoTokenizer
>>> model = TFAutoModelWithLMHead.from_pretrained("t5-base")
>>> model = TFAutoModelWithLMHead.from_pretrained("t5-base", return_dict=True)
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> inputs = tokenizer.encode("translate English to German: Hugging Face is a technology company based in New York and Paris", return_tensors="tf")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment