Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
bda1cb02
Unverified
Commit
bda1cb02
authored
Aug 13, 2021
by
Gunjan Chhablani
Committed by
GitHub
Aug 13, 2021
Browse files
Fix VisualBERT docs (#13106)
* Fix VisualBERT docs * Show example notebooks as lists * Fix style
parent
e46ad22c
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
40 additions
and
25 deletions
+40
-25
docs/source/model_doc/visual_bert.rst
docs/source/model_doc/visual_bert.rst
+18
-3
src/transformers/models/visual_bert/modeling_visual_bert.py
src/transformers/models/visual_bert/modeling_visual_bert.py
+22
-22
No files found.
docs/source/model_doc/visual_bert.rst
View file @
bda1cb02
...
@@ -58,9 +58,17 @@ layer, and is expected to be bound by [CLS] and a [SEP] tokens, as in BERT. The
...
@@ -58,9 +58,17 @@ layer, and is expected to be bound by [CLS] and a [SEP] tokens, as in BERT. The
appropriately for the textual and visual parts.
appropriately for the textual and visual parts.
The :class:`~transformers.BertTokenizer` is used to encode the text. A custom detector/feature extractor must be used
The :class:`~transformers.BertTokenizer` is used to encode the text. A custom detector/feature extractor must be used
to get the visual embeddings. For an example on how to generate visual embeddings, see the `colab notebook
to get the visual embeddings. The following example notebooks show how to use VisualBERT with Detectron-like models:
<https://colab.research.google.com/drive/1bLGxKdldwqnMVA5x4neY7-l_8fKGWQYI?usp=sharing>`__. The following example shows
how to get the last hidden state using :class:`~transformers.VisualBertModel`:
* `VisualBERT VQA demo notebook
<https://github.com/huggingface/transformers/tree/master/examples/research_projects/visual_bert>`__ : This notebook
contains an example on VisualBERT VQA.
* `Generate Embeddings for VisualBERT (Colab Notebook)
<https://colab.research.google.com/drive/1bLGxKdldwqnMVA5x4neY7-l_8fKGWQYI?usp=sharing>`__ : This notebook contains
an example on how to generate visual embeddings.
The following example shows how to get the last hidden state using :class:`~transformers.VisualBertModel`:
.. code-block::
.. code-block::
...
@@ -74,6 +82,13 @@ how to get the last hidden state using :class:`~transformers.VisualBertModel`:
...
@@ -74,6 +82,13 @@ how to get the last hidden state using :class:`~transformers.VisualBertModel`:
>>> # this is a custom function that returns the visual embeddings given the image path
>>> # this is a custom function that returns the visual embeddings given the image path
>>> visual_embeds = get_visual_embeddings(image_path)
>>> visual_embeds = get_visual_embeddings(image_path)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask
... })
>>> outputs = model(**inputs)
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> last_hidden_state = outputs.last_hidden_state
...
...
src/transformers/models/visual_bert/modeling_visual_bert.py
View file @
bda1cb02
...
@@ -743,14 +743,14 @@ class VisualBertModel(VisualBertPreTrainedModel):
...
@@ -743,14 +743,14 @@ class VisualBertModel(VisualBertPreTrainedModel):
>>> inputs = tokenizer("The capital of France is Paris.", return_tensors="pt")
>>> inputs = tokenizer("The capital of France is Paris.", return_tensors="pt")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
#example
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({
{
>>> inputs.update({
... "visual_embeds": visual_embeds,
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask
... "visual_attention_mask": visual_attention_mask
...
}
})
... })
>>> outputs = model(**inputs)
>>> outputs = model(**inputs)
...
@@ -923,14 +923,14 @@ class VisualBertForPreTraining(VisualBertPreTrainedModel):
...
@@ -923,14 +923,14 @@ class VisualBertForPreTraining(VisualBertPreTrainedModel):
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
#example
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({
{
>>> inputs.update({
... "visual_embeds": visual_embeds,
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask
... "visual_attention_mask": visual_attention_mask
...
}
})
... })
>>> max_length = inputs["input_ids"].shape[-1]+visual_embeds.shape[-2]
>>> max_length = inputs["input_ids"].shape[-1]+visual_embeds.shape[-2]
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt", padding="max_length", max_length=max_length)["input_ids"]
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt", padding="max_length", max_length=max_length)["input_ids"]
>>> sentence_image_labels = torch.tensor(1).unsqueeze(0) # Batch_size
>>> sentence_image_labels = torch.tensor(1).unsqueeze(0) # Batch_size
...
@@ -1068,13 +1068,13 @@ class VisualBertForMultipleChoice(VisualBertPreTrainedModel):
...
@@ -1068,13 +1068,13 @@ class VisualBertForMultipleChoice(VisualBertPreTrainedModel):
>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
>>> # batch size is 1
>>> # batch size is 1
>>> inputs_dict =
{
{k: v.unsqueeze(0) for k,v in encoding.items()}
}
>>> inputs_dict = {k: v.unsqueeze(0) for k,v in encoding.items()}
>>> inputs_dict.update({
{
>>> inputs_dict.update({
... visual_embeds
=
visual_embeds,
...
"
visual_embeds
":
visual_embeds,
... visual_attention_mask
=
visual_attention_mask,
...
"
visual_attention_mask
":
visual_attention_mask,
... visual_token_type_ids
=
visual_token_type_ids,
...
"
visual_token_type_ids
":
visual_token_type_ids,
... labels
=
labels
...
"
labels
":
labels
...
}
})
... })
>>> outputs = model(**inputs_dict)
>>> outputs = model(**inputs_dict)
>>> loss = outputs.loss
>>> loss = outputs.loss
...
@@ -1204,14 +1204,14 @@ class VisualBertForQuestionAnswering(VisualBertPreTrainedModel):
...
@@ -1204,14 +1204,14 @@ class VisualBertForQuestionAnswering(VisualBertPreTrainedModel):
>>> text = "Who is eating the apple?"
>>> text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors='pt')
>>> inputs = tokenizer(text, return_tensors='pt')
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
#example
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({
{
>>> inputs.update({
... "visual_embeds": visual_embeds,
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask
... "visual_attention_mask": visual_attention_mask
...
}
})
... })
>>> labels = torch.tensor([[0.0,1.0]]).unsqueeze(0) # Batch size 1, Num labels 2
>>> labels = torch.tensor([[0.0,1.0]]).unsqueeze(0) # Batch size 1, Num labels 2
...
@@ -1326,14 +1326,14 @@ class VisualBertForVisualReasoning(VisualBertPreTrainedModel):
...
@@ -1326,14 +1326,14 @@ class VisualBertForVisualReasoning(VisualBertPreTrainedModel):
>>> text = "Who is eating the apple?"
>>> text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors='pt')
>>> inputs = tokenizer(text, return_tensors='pt')
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
#example
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({
{
>>> inputs.update({
... "visual_embeds": visual_embeds,
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask
... "visual_attention_mask": visual_attention_mask
...
}
})
... })
>>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1, Num choices 2
>>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1, Num choices 2
...
@@ -1486,16 +1486,16 @@ class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel):
...
@@ -1486,16 +1486,16 @@ class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel):
>>> text = "Who is eating the apple?"
>>> text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors='pt')
>>> inputs = tokenizer(text, return_tensors='pt')
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
#example
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> region_to_phrase_position = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2]))
>>> region_to_phrase_position = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2]))
>>> inputs.update({
{
>>> inputs.update({
... "region_to_phrase_position": region_to_phrase_position,
... "region_to_phrase_position": region_to_phrase_position,
... "visual_embeds": visual_embeds,
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask
... "visual_attention_mask": visual_attention_mask
...
}
})
... })
>>> labels = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2], visual_embeds.shape[-2])) # Batch size 1
>>> labels = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2], visual_embeds.shape[-2])) # Batch size 1
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment