"examples/git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "bc0e55a00bbbc825f27d851ccc58a749d18b4fd9"
Commit bb5ce67a authored by thomwolf's avatar thomwolf
Browse files

adding back tf code + adding models comparison on SQuAD

parent 290633b8
This source diff could not be displayed because it is too large. You can view the blob instead.
...@@ -27,11 +27,16 @@ ...@@ -27,11 +27,16 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 1,
"metadata": {}, "metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:49.025081Z",
"start_time": "2018-11-05T09:34:49.012403Z"
}
},
"outputs": [], "outputs": [],
"source": [ "source": [
"original_tf_inplem_dir = \"../bert/\"\n", "original_tf_inplem_dir = \"./tensorflow_code/\"\n",
"model_dir = \"../uncased_L-12_H-768_A-12/\"\n", "model_dir = \"../google_models/uncased_L-12_H-768_A-12/\"\n",
"\n", "\n",
"vocab_file = model_dir + \"vocab.txt\"\n", "vocab_file = model_dir + \"vocab.txt\"\n",
"bert_config_file = model_dir + \"bert_config.json\"\n", "bert_config_file = model_dir + \"bert_config.json\"\n",
...@@ -46,25 +51,21 @@ ...@@ -46,25 +51,21 @@
"execution_count": 2, "execution_count": 2,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:37.498678Z", "end_time": "2018-11-05T09:34:50.216833Z",
"start_time": "2018-11-03T02:09:36.366672Z" "start_time": "2018-11-05T09:34:49.027270Z"
} }
}, },
"outputs": [ "outputs": [],
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [ "source": [
"import importlib.util\n",
"import sys\n", "import sys\n",
"sys.path.append(original_tf_inplem_dir)\n",
"\n", "\n",
"from extract_features import *" "spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/extract_features.py')\n",
"module = importlib.util.module_from_spec(spec)\n",
"spec.loader.exec_module(module)\n",
"sys.modules['extract_features_tensorflow'] = module\n",
"\n",
"from extract_features_tensorflow import *"
] ]
}, },
{ {
...@@ -72,8 +73,8 @@ ...@@ -72,8 +73,8 @@
"execution_count": 3, "execution_count": 3,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:37.621865Z", "end_time": "2018-11-05T09:34:50.338711Z",
"start_time": "2018-11-03T02:09:37.500988Z" "start_time": "2018-11-05T09:34:50.218734Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -109,8 +110,8 @@ ...@@ -109,8 +110,8 @@
"execution_count": 4, "execution_count": 4,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:40.831618Z", "end_time": "2018-11-05T09:34:53.784740Z",
"start_time": "2018-11-03T02:09:37.624063Z" "start_time": "2018-11-05T09:34:50.342200Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -118,15 +119,15 @@ ...@@ -118,15 +119,15 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x1289c1a60>) includes params argument, but params are not passed to Estimator.\n", "WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x11d0419d8>) includes params argument, but params are not passed to Estimator.\n",
"WARNING:tensorflow:Using temporary folder as model directory: /var/folders/y2/py87pn6115bdsdftbc6394nh0000gn/T/tmpmcfk2tyr\n", "WARNING:tensorflow:Using temporary folder as model directory: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpt4nhctcg\n",
"INFO:tensorflow:Using config: {'_model_dir': '/var/folders/y2/py87pn6115bdsdftbc6394nh0000gn/T/tmpmcfk2tyr', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true\n", "INFO:tensorflow:Using config: {'_model_dir': '/var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpt4nhctcg', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true\n",
"graph_options {\n", "graph_options {\n",
" rewrite_options {\n", " rewrite_options {\n",
" meta_optimizer_iterations: ONE\n", " meta_optimizer_iterations: ONE\n",
" }\n", " }\n",
"}\n", "}\n",
", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x12c242470>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=2, num_shards=1, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None}\n", ", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x1200ccb70>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=2, num_shards=1, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None}\n",
"WARNING:tensorflow:Setting TPUConfig.num_shards==1 is an unsupported behavior. Please fix as soon as possible (leaving num_shards as None.\n", "WARNING:tensorflow:Setting TPUConfig.num_shards==1 is an unsupported behavior. Please fix as soon as possible (leaving num_shards as None.\n",
"INFO:tensorflow:_TPUContext: eval_on_tpu True\n", "INFO:tensorflow:_TPUContext: eval_on_tpu True\n",
"WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.\n" "WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.\n"
...@@ -165,8 +166,8 @@ ...@@ -165,8 +166,8 @@
"execution_count": 5, "execution_count": 5,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:46.413197Z", "end_time": "2018-11-05T09:34:58.695496Z",
"start_time": "2018-11-03T02:09:40.834621Z" "start_time": "2018-11-05T09:34:53.787465Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -174,7 +175,7 @@ ...@@ -174,7 +175,7 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"INFO:tensorflow:Could not find trained model in model_dir: /var/folders/y2/py87pn6115bdsdftbc6394nh0000gn/T/tmpmcfk2tyr, running initialization to predict.\n", "INFO:tensorflow:Could not find trained model in model_dir: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpt4nhctcg, running initialization to predict.\n",
"INFO:tensorflow:Calling model_fn.\n", "INFO:tensorflow:Calling model_fn.\n",
"INFO:tensorflow:Running infer on CPU\n", "INFO:tensorflow:Running infer on CPU\n",
"INFO:tensorflow:Done calling model_fn.\n", "INFO:tensorflow:Done calling model_fn.\n",
...@@ -228,8 +229,8 @@ ...@@ -228,8 +229,8 @@
"execution_count": 6, "execution_count": 6,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:46.460128Z", "end_time": "2018-11-05T09:34:58.741194Z",
"start_time": "2018-11-03T02:09:46.416138Z" "start_time": "2018-11-05T09:34:58.697190Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -269,8 +270,8 @@ ...@@ -269,8 +270,8 @@
"execution_count": 7, "execution_count": 7,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:46.498637Z", "end_time": "2018-11-05T09:34:58.779046Z",
"start_time": "2018-11-03T02:09:46.463115Z" "start_time": "2018-11-05T09:34:58.743861Z"
} }
}, },
"outputs": [], "outputs": [],
...@@ -290,8 +291,8 @@ ...@@ -290,8 +291,8 @@
"execution_count": 8, "execution_count": 8,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:46.660303Z", "end_time": "2018-11-05T09:34:58.934535Z",
"start_time": "2018-11-03T02:09:46.501325Z" "start_time": "2018-11-05T09:34:58.781393Z"
} }
}, },
"outputs": [], "outputs": [],
...@@ -302,20 +303,25 @@ ...@@ -302,20 +303,25 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 32,
"metadata": {}, "metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:41:23.922979Z",
"start_time": "2018-11-05T09:41:23.890277Z"
}
},
"outputs": [], "outputs": [],
"source": [ "source": [
"init_checkpoint_pt = \"../pytorch_model/uncased_L-12_H-768_A-12/pytorch_model.bin\"" "init_checkpoint_pt = \"../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin\""
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 11,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:48.292135Z", "end_time": "2018-11-05T09:35:00.435355Z",
"start_time": "2018-11-03T02:09:46.661921Z" "start_time": "2018-11-05T09:34:59.269985Z"
}, },
"scrolled": true "scrolled": true
}, },
...@@ -618,7 +624,7 @@ ...@@ -618,7 +624,7 @@
")" ")"
] ]
}, },
"execution_count": 10, "execution_count": 11,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -632,11 +638,11 @@ ...@@ -632,11 +638,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 12,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:48.332982Z", "end_time": "2018-11-05T09:35:00.476576Z",
"start_time": "2018-11-03T02:09:48.294056Z" "start_time": "2018-11-05T09:35:00.436902Z"
}, },
"code_folding": [] "code_folding": []
}, },
...@@ -939,7 +945,7 @@ ...@@ -939,7 +945,7 @@
")" ")"
] ]
}, },
"execution_count": 11, "execution_count": 12,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -959,11 +965,11 @@ ...@@ -959,11 +965,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 13,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:54.371188Z", "end_time": "2018-11-05T09:35:00.938199Z",
"start_time": "2018-11-03T02:09:53.976875Z" "start_time": "2018-11-05T09:35:00.478338Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -1047,11 +1053,11 @@ ...@@ -1047,11 +1053,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 14,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:57.139854Z", "end_time": "2018-11-05T09:35:00.986964Z",
"start_time": "2018-11-03T02:09:57.104636Z" "start_time": "2018-11-05T09:35:00.941625Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -1073,7 +1079,7 @@ ...@@ -1073,7 +1079,7 @@
"(128, 768)" "(128, 768)"
] ]
}, },
"execution_count": 13, "execution_count": 14,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -1090,11 +1096,11 @@ ...@@ -1090,11 +1096,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 15,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:59.000058Z", "end_time": "2018-11-05T09:35:01.026420Z",
"start_time": "2018-11-03T02:09:58.967575Z" "start_time": "2018-11-05T09:35:00.988377Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -1115,11 +1121,11 @@ ...@@ -1115,11 +1121,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 15, "execution_count": 16,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:09:59.462123Z", "end_time": "2018-11-05T09:35:01.065912Z",
"start_time": "2018-11-03T02:09:59.430932Z" "start_time": "2018-11-05T09:35:01.028986Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -1146,11 +1152,11 @@ ...@@ -1146,11 +1152,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 16, "execution_count": 17,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:10:00.014784Z", "end_time": "2018-11-05T09:35:01.105895Z",
"start_time": "2018-11-03T02:09:59.983978Z" "start_time": "2018-11-05T09:35:01.067712Z"
} }
}, },
"outputs": [], "outputs": [],
...@@ -1160,11 +1166,11 @@ ...@@ -1160,11 +1166,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 31,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-03T02:10:09.582557Z", "end_time": "2018-11-05T09:38:17.626158Z",
"start_time": "2018-11-03T02:10:09.549308Z" "start_time": "2018-11-05T09:38:17.589346Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -1172,25 +1178,35 @@ ...@@ -1172,25 +1178,35 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"(128, 768) (128, 768)\n" "shape tensorflow layer, shape pytorch layer, standard deviation\n",
"((128, 768), (128, 768), 1.5258875e-07)\n",
"((128, 768), (128, 768), 2.342731e-07)\n",
"((128, 768), (128, 768), 2.801949e-07)\n",
"((128, 768), (128, 768), 3.5904986e-07)\n",
"((128, 768), (128, 768), 4.2842768e-07)\n",
"((128, 768), (128, 768), 5.127951e-07)\n",
"((128, 768), (128, 768), 6.14668e-07)\n",
"((128, 768), (128, 768), 7.063922e-07)\n",
"((128, 768), (128, 768), 7.906173e-07)\n",
"((128, 768), (128, 768), 8.475192e-07)\n",
"((128, 768), (128, 768), 8.975489e-07)\n",
"((128, 768), (128, 768), 4.1671223e-07)\n"
] ]
},
{
"data": {
"text/plain": [
"4.1671223e-07"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
} }
], ],
"source": [ "source": [
"i = 11\n", "print('shape tensorflow layer, shape pytorch layer, standard deviation')\n",
"print(np.array(tensorflow_outputs[i]).shape, np.array(pytorch_outputs[i]).shape)\n", "print('\\n'.join(list(str((np.array(tensorflow_outputs[i]).shape,\n",
"np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0))" " np.array(pytorch_outputs[i]).shape, \n",
" np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(12))))"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
......
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Create masked LM/next sentence masked_lm TF examples for BERT."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import random
from tensorflow_code import tokenization
import tensorflow as tf
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("input_file", None,
"Input raw text file (or comma-separated list of files).")
flags.DEFINE_string(
"output_file", None,
"Output TF example file (or comma-separated list of files).")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.")
flags.DEFINE_integer("max_predictions_per_seq", 20,
"Maximum number of masked LM predictions per sequence.")
flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.")
flags.DEFINE_integer(
"dupe_factor", 10,
"Number of times to duplicate the input data (with different masks).")
flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")
flags.DEFINE_float(
"short_seq_prob", 0.1,
"Probability of creating sequences which are shorter than the "
"maximum length.")
class TrainingInstance(object):
"""A single training instance (sentence pair)."""
def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels,
is_random_next):
self.tokens = tokens
self.segment_ids = segment_ids
self.is_random_next = is_random_next
self.masked_lm_positions = masked_lm_positions
self.masked_lm_labels = masked_lm_labels
def __str__(self):
s = ""
s += "tokens: %s\n" % (" ".join(
[tokenization.printable_text(x) for x in self.tokens]))
s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids]))
s += "is_random_next: %s\n" % self.is_random_next
s += "masked_lm_positions: %s\n" % (" ".join(
[str(x) for x in self.masked_lm_positions]))
s += "masked_lm_labels: %s\n" % (" ".join(
[tokenization.printable_text(x) for x in self.masked_lm_labels]))
s += "\n"
return s
def __repr__(self):
return self.__str__()
def write_instance_to_example_files(instances, tokenizer, max_seq_length,
max_predictions_per_seq, output_files):
"""Create TF example files from `TrainingInstance`s."""
writers = []
for output_file in output_files:
writers.append(tf.python_io.TFRecordWriter(output_file))
writer_index = 0
total_written = 0
for (inst_index, instance) in enumerate(instances):
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
input_mask = [1] * len(input_ids)
segment_ids = list(instance.segment_ids)
assert len(input_ids) <= max_seq_length
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
masked_lm_positions = list(instance.masked_lm_positions)
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
masked_lm_weights = [1.0] * len(masked_lm_ids)
while len(masked_lm_positions) < max_predictions_per_seq:
masked_lm_positions.append(0)
masked_lm_ids.append(0)
masked_lm_weights.append(0.0)
next_sentence_label = 1 if instance.is_random_next else 0
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(input_ids)
features["input_mask"] = create_int_feature(input_mask)
features["segment_ids"] = create_int_feature(segment_ids)
features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
features["next_sentence_labels"] = create_int_feature([next_sentence_label])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writers[writer_index].write(tf_example.SerializeToString())
writer_index = (writer_index + 1) % len(writers)
total_written += 1
if inst_index < 20:
tf.logging.info("*** Example ***")
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in instance.tokens]))
for feature_name in features.keys():
feature = features[feature_name]
values = []
if feature.int64_list.value:
values = feature.int64_list.value
elif feature.float_list.value:
values = feature.float_list.value
tf.logging.info(
"%s: %s" % (feature_name, " ".join([str(x) for x in values])))
for writer in writers:
writer.close()
tf.logging.info("Wrote %d total instances", total_written)
def create_int_feature(values):
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return feature
def create_float_feature(values):
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return feature
def create_training_instances(input_files, tokenizer, max_seq_length,
dupe_factor, short_seq_prob, masked_lm_prob,
max_predictions_per_seq, rng):
"""Create `TrainingInstance`s from raw text."""
all_documents = [[]]
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
for input_file in input_files:
with tf.gfile.GFile(input_file, "r") as reader:
while True:
line = tokenization.convert_to_unicode(reader.readline())
if not line:
break
line = line.strip()
# Empty lines are used as document delimiters
if not line:
all_documents.append([])
tokens = tokenizer.tokenize(line)
if tokens:
all_documents[-1].append(tokens)
# Remove empty documents
all_documents = [x for x in all_documents if x]
rng.shuffle(all_documents)
vocab_words = list(tokenizer.vocab.keys())
instances = []
for _ in range(dupe_factor):
for document_index in range(len(all_documents)):
instances.extend(
create_instances_from_document(
all_documents, document_index, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_words, rng))
rng.shuffle(instances)
return instances
def create_instances_from_document(
all_documents, document_index, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
"""Creates `TrainingInstance`s for a single document."""
document = all_documents[document_index]
# Account for [CLS], [SEP], [SEP]
max_num_tokens = max_seq_length - 3
# We *usually* want to fill up the entire sequence since we are padding
# to `max_seq_length` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pre-training and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `max_seq_length` is a hard limit.
target_seq_length = max_num_tokens
if rng.random() < short_seq_prob:
target_seq_length = rng.randint(2, max_num_tokens)
# We DON'T just concatenate all of the tokens from a document into a long
# sequence and choose an arbitrary split point because this would make the
# next sentence prediction task too easy. Instead, we split the input into
# segments "A" and "B" based on the actual "sentences" provided by the user
# input.
instances = []
current_chunk = []
current_length = 0
i = 0
while i < len(document):
segment = document[i]
current_chunk.append(segment)
current_length += len(segment)
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2:
a_end = rng.randint(1, len(current_chunk) - 1)
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
tokens_b = []
# Random next
is_random_next = False
if len(current_chunk) == 1 or rng.random() < 0.5:
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)
# This should rarely go for more than one iteration for large
# corpora. However, just to be careful, we try to make sure that
# the random document is not the same as the document
# we're processing.
for _ in range(10):
random_document_index = rng.randint(0, len(all_documents) - 1)
if random_document_index != document_index:
break
random_document = all_documents[random_document_index]
random_start = rng.randint(0, len(random_document) - 1)
for j in range(random_start, len(random_document)):
tokens_b.extend(random_document[j])
if len(tokens_b) >= target_b_length:
break
# We didn't actually use these segments so we "put them back" so
# they don't go to waste.
num_unused_segments = len(current_chunk) - a_end
i -= num_unused_segments
# Actual next
else:
is_random_next = False
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)
assert len(tokens_a) >= 1
assert len(tokens_b) >= 1
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
(tokens, masked_lm_positions,
masked_lm_labels) = create_masked_lm_predictions(
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
instance = TrainingInstance(
tokens=tokens,
segment_ids=segment_ids,
is_random_next=is_random_next,
masked_lm_positions=masked_lm_positions,
masked_lm_labels=masked_lm_labels)
instances.append(instance)
current_chunk = []
current_length = 0
i += 1
return instances
def create_masked_lm_predictions(tokens, masked_lm_prob,
max_predictions_per_seq, vocab_words, rng):
"""Creates the predictis for the masked LM objective."""
cand_indexes = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
cand_indexes.append(i)
rng.shuffle(cand_indexes)
output_tokens = list(tokens)
masked_lm = collections.namedtuple("masked_lm", ["index", "label"]) # pylint: disable=invalid-name
num_to_predict = min(max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob))))
masked_lms = []
covered_indexes = set()
for index in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
if index in covered_indexes:
continue
covered_indexes.add(index)
masked_token = None
# 80% of the time, replace with [MASK]
if rng.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if rng.random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]
output_tokens[index] = masked_token
masked_lms.append(masked_lm(index=index, label=tokens[index]))
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_positions = []
masked_lm_labels = []
for p in masked_lms:
masked_lm_positions.append(p.index)
masked_lm_labels.append(p.label)
return (output_tokens, masked_lm_positions, masked_lm_labels)
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
"""Truncates a pair of sequences to a maximum sequence length."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_num_tokens:
break
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
assert len(trunc_tokens) >= 1
# We want to sometimes truncate from the front and sometimes from the
# back to add more randomness and avoid biases.
if rng.random() < 0.5:
del trunc_tokens[0]
else:
trunc_tokens.pop()
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Reading from input files ***")
for input_file in input_files:
tf.logging.info(" %s", input_file)
rng = random.Random(FLAGS.random_seed)
instances = create_training_instances(
input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor,
FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq,
rng)
output_files = FLAGS.output_file.split(",")
tf.logging.info("*** Writing to output files ***")
for output_file in output_files:
tf.logging.info(" %s", output_file)
write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length,
FLAGS.max_predictions_per_seq, output_files)
if __name__ == "__main__":
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("output_file")
flags.mark_flag_as_required("vocab_file")
tf.app.run()
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Extract pre-computed feature vectors from BERT."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import codecs
import collections
import json
import re
from tensorflow_code import modeling
from tensorflow_code import tokenization
import tensorflow as tf
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("input_file", None, "")
flags.DEFINE_string("output_file", None, "")
flags.DEFINE_string("layers", "-1,-2,-3,-4", "")
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whethre to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer("batch_size", 32, "Batch size for predictions.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
flags.DEFINE_string("master", None,
"If using a TPU, the address of the master.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
flags.DEFINE_bool(
"use_one_hot_embeddings", False,
"If True, tf.one_hot will be used for embedding lookups, otherwise "
"tf.nn.embedding_lookup will be used. On TPUs, this should be True "
"since it is much faster.")
class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
self.unique_id = unique_id
self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.input_type_ids = input_type_ids
def input_fn_builder(features, seq_length):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
all_unique_ids = []
all_input_ids = []
all_input_mask = []
all_input_type_ids = []
for feature in features:
all_unique_ids.append(feature.unique_id)
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_input_type_ids.append(feature.input_type_ids)
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
num_examples = len(features)
# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"unique_ids":
tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32),
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"input_type_ids":
tf.constant(
all_input_type_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
})
d = d.batch(batch_size=batch_size, drop_remainder=False)
return d
return input_fn
def model_fn_builder(bert_config, init_checkpoint, layer_indexes, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
unique_ids = features["unique_ids"]
input_ids = features["input_ids"]
input_mask = features["input_mask"]
input_type_ids = features["input_type_ids"]
model = modeling.BertModel(
config=bert_config,
is_training=False,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=input_type_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
if mode != tf.estimator.ModeKeys.PREDICT:
raise ValueError("Only PREDICT modes are supported: %s" % (mode))
tvars = tf.trainable_variables()
scaffold_fn = None
(assignment_map, _) = modeling.get_assigment_map_from_checkpoint(
tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
all_layers = model.get_all_encoder_layers()
predictions = {
"unique_id": unique_ids,
}
for (i, layer_index) in enumerate(layer_indexes):
predictions["layer_output_%d" % i] = all_layers[layer_index]
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
return output_spec
return model_fn
def convert_examples_to_features(examples, seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
input_type_ids.append(1)
tokens.append("[SEP]")
input_type_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("unique_id: %s" % (example.unique_id))
tf.logging.info("tokens: %s" % " ".join([str(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info(
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
features.append(
InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def read_examples(input_file):
"""Read a list of `InputExample`s from an input file."""
examples = []
unique_id = 0
with tf.gfile.GFile(input_file, "r") as reader:
while True:
line = tokenization.convert_to_unicode(reader.readline())
if not line:
break
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
examples.append(
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
unique_id += 1
return examples
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
layer_indexes = [int(x) for x in FLAGS.layers.split(",")]
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
master=FLAGS.master,
tpu_config=tf.contrib.tpu.TPUConfig(
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
examples = read_examples(FLAGS.input_file)
features = convert_examples_to_features(
examples=examples, seq_length=FLAGS.max_seq_length, tokenizer=tokenizer)
unique_id_to_feature = {}
for feature in features:
unique_id_to_feature[feature.unique_id] = feature
model_fn = model_fn_builder(
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
layer_indexes=layer_indexes,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_one_hot_embeddings)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
predict_batch_size=FLAGS.batch_size)
input_fn = input_fn_builder(
features=features, seq_length=FLAGS.max_seq_length)
with codecs.getwriter("utf-8")(tf.gfile.Open(FLAGS.output_file,
"w")) as writer:
for result in estimator.predict(input_fn, yield_single_examples=True):
unique_id = int(result["unique_id"])
feature = unique_id_to_feature[unique_id]
output_json = collections.OrderedDict()
output_json["linex_index"] = unique_id
all_features = []
for (i, token) in enumerate(feature.tokens):
all_layers = []
for (j, layer_index) in enumerate(layer_indexes):
layer_output = result["layer_output_%d" % j]
layers = collections.OrderedDict()
layers["index"] = layer_index
layers["values"] = [
round(float(x), 6) for x in layer_output[i:(i + 1)].flat
]
all_layers.append(layers)
features = collections.OrderedDict()
features["token"] = token
features["layers"] = all_layers
all_features.append(features)
output_json["features"] = all_features
writer.write(json.dumps(output_json) + "\n")
if __name__ == "__main__":
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("init_checkpoint")
flags.mark_flag_as_required("output_file")
tf.app.run()
This diff is collapsed.
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import json
import random
import re
from tensorflow_code import modeling
import six
import tensorflow as tf
class BertModelTest(tf.test.TestCase):
class BertModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02,
scope=None):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.scope = scope
def create_model(self):
input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = BertModelTest.ids_tensor(
[self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = BertModelTest.ids_tensor(
[self.batch_size, self.seq_length], self.type_vocab_size)
config = modeling.BertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range)
model = modeling.BertModel(
config=config,
is_training=self.is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=token_type_ids,
scope=self.scope)
outputs = {
"embedding_output": model.get_embedding_output(),
"sequence_output": model.get_sequence_output(),
"pooled_output": model.get_pooled_output(),
"all_encoder_layers": model.get_all_encoder_layers(),
}
return outputs
def check_output(self, result):
self.parent.assertAllEqual(
result["embedding_output"].shape,
[self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertAllEqual(
result["sequence_output"].shape,
[self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertAllEqual(result["pooled_output"].shape,
[self.batch_size, self.hidden_size])
def test_default(self):
self.run_tester(BertModelTest.BertModelTester(self))
def test_config_to_json_string(self):
config = modeling.BertConfig(vocab_size=99, hidden_size=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["vocab_size"], 99)
self.assertEqual(obj["hidden_size"], 37)
def run_tester(self, tester):
with self.test_session() as sess:
ops = tester.create_model()
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init_op)
output_result = sess.run(ops)
tester.check_output(output_result)
self.assert_all_tensors_reachable(sess, [init_op, ops])
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)
def assert_all_tensors_reachable(self, sess, outputs):
"""Checks that all the tensors in the graph are reachable from outputs."""
graph = sess.graph
ignore_strings = [
"^.*/dilation_rate$",
"^.*/Tensordot/concat$",
"^.*/Tensordot/concat/axis$",
"^testing/.*$",
]
ignore_regexes = [re.compile(x) for x in ignore_strings]
unreachable = self.get_unreachable_ops(graph, outputs)
filtered_unreachable = []
for x in unreachable:
do_ignore = False
for r in ignore_regexes:
m = r.match(x.name)
if m is not None:
do_ignore = True
if do_ignore:
continue
filtered_unreachable.append(x)
unreachable = filtered_unreachable
self.assertEqual(
len(unreachable), 0, "The following ops are unreachable: %s" %
(" ".join([x.name for x in unreachable])))
@classmethod
def get_unreachable_ops(cls, graph, outputs):
"""Finds all of the tensors in graph that are unreachable from outputs."""
outputs = cls.flatten_recursive(outputs)
output_to_op = collections.defaultdict(list)
op_to_all = collections.defaultdict(list)
assign_out_to_in = collections.defaultdict(list)
for op in graph.get_operations():
for x in op.inputs:
op_to_all[op.name].append(x.name)
for y in op.outputs:
output_to_op[y.name].append(op.name)
op_to_all[op.name].append(y.name)
if str(op.type) == "Assign":
for y in op.outputs:
for x in op.inputs:
assign_out_to_in[y.name].append(x.name)
assign_groups = collections.defaultdict(list)
for out_name in assign_out_to_in.keys():
name_group = assign_out_to_in[out_name]
for n1 in name_group:
assign_groups[n1].append(out_name)
for n2 in name_group:
if n1 != n2:
assign_groups[n1].append(n2)
seen_tensors = {}
stack = [x.name for x in outputs]
while stack:
name = stack.pop()
if name in seen_tensors:
continue
seen_tensors[name] = True
if name in output_to_op:
for op_name in output_to_op[name]:
if op_name in op_to_all:
for input_name in op_to_all[op_name]:
if input_name not in stack:
stack.append(input_name)
expanded_names = []
if name in assign_groups:
for assign_name in assign_groups[name]:
expanded_names.append(assign_name)
for expanded_name in expanded_names:
if expanded_name not in stack:
stack.append(expanded_name)
unreachable_ops = []
for op in graph.get_operations():
is_unreachable = False
all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
for name in all_names:
if name not in seen_tensors:
is_unreachable = True
if is_unreachable:
unreachable_ops.append(op)
return unreachable_ops
@classmethod
def flatten_recursive(cls, item):
"""Flattens (potentially nested) a tuple/dictionary/list to a list."""
output = []
if isinstance(item, list):
output.extend(item)
elif isinstance(item, tuple):
output.extend(list(item))
elif isinstance(item, dict):
for (_, v) in six.iteritems(item):
output.append(v)
else:
return [item]
flat_output = []
for x in output:
flat_output.extend(cls.flatten_recursive(x))
return flat_output
if __name__ == "__main__":
tf.test.main()
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions and classes related to optimization (weight updates)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import tensorflow as tf
def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu):
"""Creates an optimizer training op."""
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
# Implements linear decay of the learning rate.
learning_rate = tf.train.polynomial_decay(
learning_rate,
global_step,
num_train_steps,
end_learning_rate=0.0,
power=1.0,
cycle=False)
# Implements linear warmup. I.e., if global_step < num_warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
if num_warmup_steps:
global_steps_int = tf.cast(global_step, tf.int32)
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
global_steps_float = tf.cast(global_steps_int, tf.float32)
warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
warmup_percent_done = global_steps_float / warmup_steps_float
warmup_learning_rate = init_lr * warmup_percent_done
is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
learning_rate = (
(1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
# It is recommended that you use this optimizer for fine tuning, since this
# is how the model was trained (note that the Adam m/v variables are NOT
# loaded from init_checkpoint.)
optimizer = AdamWeightDecayOptimizer(
learning_rate=learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
if use_tpu:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
tvars = tf.trainable_variables()
grads = tf.gradients(loss, tvars)
# This is how the model was pre-trained.
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
train_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=global_step)
new_global_step = global_step + 1
train_op = tf.group(train_op, [global_step.assign(new_global_step)])
return train_op
class AdamWeightDecayOptimizer(tf.train.Optimizer):
"""A basic Adam optimizer that includes "correct" L2 weight decay."""
def __init__(self,
learning_rate,
weight_decay_rate=0.0,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
name="AdamWeightDecayOptimizer"):
"""Constructs a AdamWeightDecayOptimizer."""
super(AdamWeightDecayOptimizer, self).__init__(False, name)
self.learning_rate = learning_rate
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.get_variable(
name=param_name + "/adam_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
v = tf.get_variable(
name=param_name + "/adam_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
# Standard Adam update.
next_m = (
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = (
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
update_with_lr = self.learning_rate * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow_code import optimization
import tensorflow as tf
class OptimizationTest(tf.test.TestCase):
def test_adam(self):
with self.test_session() as sess:
w = tf.get_variable(
"w",
shape=[3],
initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
x = tf.constant([0.4, 0.2, -0.5])
loss = tf.reduce_mean(tf.square(x - w))
tvars = tf.trainable_variables()
grads = tf.gradients(loss, tvars)
global_step = tf.train.get_or_create_global_step()
optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init_op)
np_w = sess.run(w)
np_loss = sess.run(loss)
np_grad = sess.run(grads)[0]
for i in range(100):
print(i)
sess.run(train_op)
np_w = sess.run(w)
np_loss = sess.run(loss)
np_grad = sess.run(grads)[0]
self.assertAllClose(np_w.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
if __name__ == "__main__":
tf.test.main()
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import unicodedata
import six
import tensorflow as tf
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode):
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode):
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with tf.gfile.GFile(vocab_file, "r") as reader:
while True:
token = convert_to_unicode(reader.readline())
if not token:
break
token = token.strip()
vocab[token] = index
index += 1
return vocab
def convert_tokens_to_ids(vocab, tokens):
"""Converts a sequence of tokens into ids using the vocab."""
ids = []
for token in tokens:
ids.append(vocab[token])
return ids
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a peice of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_tokens_to_ids(self.vocab, tokens)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenziation."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
from tensorflow_code import tokenization
import tensorflow as tf
class TokenizationTest(tf.test.TestCase):
def test_full_tokenizer(self):
vocab_tokens = [
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
"##ing", ","
]
with tempfile.NamedTemporaryFile(delete=False) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
vocab_file = vocab_writer.name
tokenizer = tokenization.FullTokenizer(vocab_file)
os.unlink(vocab_file)
tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
self.assertAllEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertAllEqual(
tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
def test_basic_tokenizer_lower(self):
tokenizer = tokenization.BasicTokenizer(do_lower_case=True)
self.assertAllEqual(
tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
["hello", "!", "how", "are", "you", "?"])
self.assertAllEqual(tokenizer.tokenize(u"H\u00E9llo"), ["hello"])
def test_basic_tokenizer_no_lower(self):
tokenizer = tokenization.BasicTokenizer(do_lower_case=False)
self.assertAllEqual(
tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
["HeLLo", "!", "how", "Are", "yoU", "?"])
def test_wordpiece_tokenizer(self):
vocab_tokens = [
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
"##ing"
]
vocab = {}
for (i, token) in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = tokenization.WordpieceTokenizer(vocab=vocab)
self.assertAllEqual(tokenizer.tokenize(""), [])
self.assertAllEqual(
tokenizer.tokenize("unwanted running"),
["un", "##want", "##ed", "runn", "##ing"])
self.assertAllEqual(
tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
def test_convert_tokens_to_ids(self):
vocab_tokens = [
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
"##ing"
]
vocab = {}
for (i, token) in enumerate(vocab_tokens):
vocab[token] = i
self.assertAllEqual(
tokenization.convert_tokens_to_ids(
vocab, ["un", "##want", "##ed", "runn", "##ing"]), [7, 4, 5, 8, 9])
def test_is_whitespace(self):
self.assertTrue(tokenization._is_whitespace(u" "))
self.assertTrue(tokenization._is_whitespace(u"\t"))
self.assertTrue(tokenization._is_whitespace(u"\r"))
self.assertTrue(tokenization._is_whitespace(u"\n"))
self.assertTrue(tokenization._is_whitespace(u"\u00A0"))
self.assertFalse(tokenization._is_whitespace(u"A"))
self.assertFalse(tokenization._is_whitespace(u"-"))
def test_is_control(self):
self.assertTrue(tokenization._is_control(u"\u0005"))
self.assertFalse(tokenization._is_control(u"A"))
self.assertFalse(tokenization._is_control(u" "))
self.assertFalse(tokenization._is_control(u"\t"))
self.assertFalse(tokenization._is_control(u"\r"))
def test_is_punctuation(self):
self.assertTrue(tokenization._is_punctuation(u"-"))
self.assertTrue(tokenization._is_punctuation(u"$"))
self.assertTrue(tokenization._is_punctuation(u"`"))
self.assertTrue(tokenization._is_punctuation(u"."))
self.assertFalse(tokenization._is_punctuation(u"A"))
self.assertFalse(tokenization._is_punctuation(u" "))
if __name__ == "__main__":
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment