Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
baca8fa8
"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "d36fce8237eab3af6d717da8530d6edafd045e1e"
Unverified
Commit
baca8fa8
authored
Apr 16, 2020
by
Patrick von Platen
Committed by
GitHub
Apr 16, 2020
Browse files
clean pipelines (#3795)
parent
38f7461d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
21 additions
and
52 deletions
+21
-52
src/transformers/pipelines.py
src/transformers/pipelines.py
+3
-31
tests/test_pipelines.py
tests/test_pipelines.py
+18
-21
No files found.
src/transformers/pipelines.py
View file @
baca8fa8
...
@@ -23,17 +23,12 @@ import sys
...
@@ -23,17 +23,12 @@ import sys
from
abc
import
ABC
,
abstractmethod
from
abc
import
ABC
,
abstractmethod
from
contextlib
import
contextmanager
from
contextlib
import
contextmanager
from
os.path
import
abspath
,
exists
from
os.path
import
abspath
,
exists
from
typing
import
Dict
,
List
,
Optional
,
Tuple
,
Union
from
typing
import
List
,
Optional
,
Tuple
,
Union
import
numpy
as
np
import
numpy
as
np
from
.configuration_auto
import
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP
,
AutoConfig
from
.configuration_auto
import
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP
,
AutoConfig
from
.configuration_bart
import
BartConfig
from
.configuration_distilbert
import
DistilBertConfig
from
.configuration_roberta
import
RobertaConfig
from
.configuration_t5
import
T5Config
from
.configuration_utils
import
PretrainedConfig
from
.configuration_utils
import
PretrainedConfig
from
.configuration_xlm
import
XLMConfig
from
.data
import
SquadExample
,
squad_convert_examples_to_features
from
.data
import
SquadExample
,
squad_convert_examples_to_features
from
.file_utils
import
is_tf_available
,
is_torch_available
from
.file_utils
import
is_tf_available
,
is_torch_available
from
.modelcard
import
ModelCard
from
.modelcard
import
ModelCard
...
@@ -423,27 +418,6 @@ class Pipeline(_ScikitCompat):
...
@@ -423,27 +418,6 @@ class Pipeline(_ScikitCompat):
"""
"""
return
{
name
:
tensor
.
to
(
self
.
device
)
for
name
,
tensor
in
inputs
.
items
()}
return
{
name
:
tensor
.
to
(
self
.
device
)
for
name
,
tensor
in
inputs
.
items
()}
def
inputs_for_model
(
self
,
features
:
Union
[
dict
,
List
[
dict
]])
->
Dict
:
"""
Generates the input dictionary with model-specific parameters.
Returns:
dict holding all the required parameters for model's forward
"""
args
=
[
"input_ids"
,
"attention_mask"
]
if
not
isinstance
(
self
.
model
.
config
,
(
DistilBertConfig
,
XLMConfig
,
RobertaConfig
,
BartConfig
,
T5Config
)):
args
+=
[
"token_type_ids"
]
# PR #1548 (CLI) There is an issue with attention_mask
# if 'xlnet' in model_type or 'xlm' in model_type:
# args += ['cls_index', 'p_mask']
if
isinstance
(
features
,
dict
):
return
{
k
:
features
[
k
]
for
k
in
args
}
else
:
return
{
k
:
[
feature
[
k
]
for
feature
in
features
]
for
k
in
args
}
def
_parse_and_tokenize
(
self
,
*
texts
,
pad_to_max_length
=
False
,
**
kwargs
):
def
_parse_and_tokenize
(
self
,
*
texts
,
pad_to_max_length
=
False
,
**
kwargs
):
"""
"""
Parse arguments and tokenize
Parse arguments and tokenize
...
@@ -458,9 +432,6 @@ class Pipeline(_ScikitCompat):
...
@@ -458,9 +432,6 @@ class Pipeline(_ScikitCompat):
pad_to_max_length
=
pad_to_max_length
,
pad_to_max_length
=
pad_to_max_length
,
)
)
# Filter out features not available on specific models
# inputs = self.inputs_for_model(inputs)
return
inputs
return
inputs
def
__call__
(
self
,
*
texts
,
**
kwargs
):
def
__call__
(
self
,
*
texts
,
**
kwargs
):
...
@@ -995,7 +966,8 @@ class QuestionAnsweringPipeline(Pipeline):
...
@@ -995,7 +966,8 @@ class QuestionAnsweringPipeline(Pipeline):
]
]
all_answers
=
[]
all_answers
=
[]
for
features
,
example
in
zip
(
features_list
,
examples
):
for
features
,
example
in
zip
(
features_list
,
examples
):
fw_args
=
self
.
inputs_for_model
([
f
.
__dict__
for
f
in
features
])
model_input_names
=
self
.
tokenizer
.
model_input_names
+
[
"input_ids"
]
fw_args
=
{
k
:
[
feature
.
__dict__
[
k
]
for
feature
in
features
]
for
k
in
model_input_names
}
# Manage tensor allocation on correct device
# Manage tensor allocation on correct device
with
self
.
device_placement
():
with
self
.
device_placement
():
...
...
tests/test_pipelines.py
View file @
baca8fa8
...
@@ -2,26 +2,19 @@ import unittest
...
@@ -2,26 +2,19 @@ import unittest
from
typing
import
Iterable
,
List
,
Optional
from
typing
import
Iterable
,
List
,
Optional
from
transformers
import
pipeline
from
transformers
import
pipeline
from
transformers.pipelines
import
(
from
transformers.pipelines
import
Pipeline
FeatureExtractionPipeline
,
FillMaskPipeline
,
NerPipeline
,
Pipeline
,
QuestionAnsweringPipeline
,
TextClassificationPipeline
,
)
from
.utils
import
require_tf
,
require_torch
,
slow
from
.utils
import
require_tf
,
require_torch
,
slow
QA_FINETUNED_MODELS
=
[
QA_FINETUNED_MODELS
=
[
((
"bert-base-uncased"
,
{
"use_fast"
:
False
}),
"bert-large-uncased-whole-word-masking-finetuned-squad"
,
None
),
((
"bert-base-uncased"
,
{
"use_fast"
:
False
}),
"bert-large-uncased-whole-word-masking-finetuned-squad"
,
None
),
((
"bert-base-cased"
,
{
"use_fast"
:
False
}),
"distilbert-base-cased-distilled-squad"
,
None
),
((
"
distil
bert-base-cased
-distilled-squad
"
,
{
"use_fast"
:
False
}),
"distilbert-base-cased-distilled-squad"
,
None
),
]
]
TF_QA_FINETUNED_MODELS
=
[
TF_QA_FINETUNED_MODELS
=
[
((
"bert-base-uncased"
,
{
"use_fast"
:
False
}),
"bert-large-uncased-whole-word-masking-finetuned-squad"
,
None
),
((
"bert-base-uncased"
,
{
"use_fast"
:
False
}),
"bert-large-uncased-whole-word-masking-finetuned-squad"
,
None
),
((
"bert-base-cased"
,
{
"use_fast"
:
False
}),
"distilbert-base-cased-distilled-squad"
,
None
),
((
"
distil
bert-base-cased
-distilled-squad
"
,
{
"use_fast"
:
False
}),
"distilbert-base-cased-distilled-squad"
,
None
),
]
]
TF_NER_FINETUNED_MODELS
=
{
TF_NER_FINETUNED_MODELS
=
{
...
@@ -369,25 +362,29 @@ class MultiColumnInputTestCase(unittest.TestCase):
...
@@ -369,25 +362,29 @@ class MultiColumnInputTestCase(unittest.TestCase):
class
PipelineCommonTests
(
unittest
.
TestCase
):
class
PipelineCommonTests
(
unittest
.
TestCase
):
pipelines
=
(
pipelines
=
(
NerPipeline
,
"ner"
,
FeatureExtractionPipeline
,
"feature-extraction"
,
QuestionAnsweringPipeline
,
"question-answering"
,
FillMaskPipeline
,
"fill-mask"
,
TextClassificationPipeline
,
"summarization"
,
"sentiment-analysis"
,
"translation_en_to_fr"
,
"translation_en_to_de"
,
"translation_en_to_ro"
,
)
)
@
slow
@
slow
@
require_tf
@
require_tf
def
test_tf_defaults
(
self
):
def
test_tf_defaults
(
self
):
# Test that pipelines can be correctly loaded without any argument
# Test that pipelines can be correctly loaded without any argument
for
default_pipeline
in
self
.
pipelines
:
for
task
in
self
.
pipelines
:
with
self
.
subTest
(
msg
=
"Testing Torch defaults with PyTorch and {}"
.
format
(
default_pipeline
.
task
)):
with
self
.
subTest
(
msg
=
"Testing Torch defaults with PyTorch and {}"
.
format
(
task
)):
default_
pipeline
(
framework
=
"tf"
)
pipeline
(
task
,
framework
=
"tf"
)
@
slow
@
slow
@
require_torch
@
require_torch
def
test_pt_defaults
(
self
):
def
test_pt_defaults
(
self
):
# Test that pipelines can be correctly loaded without any argument
# Test that pipelines can be correctly loaded without any argument
for
default_pipeline
in
self
.
pipelines
:
for
task
in
self
.
pipelines
:
with
self
.
subTest
(
msg
=
"Testing Torch defaults with PyTorch and {}"
.
format
(
default_pipeline
.
task
)):
with
self
.
subTest
(
msg
=
"Testing Torch defaults with PyTorch and {}"
.
format
(
task
)):
default_
pipeline
(
framework
=
"pt"
)
pipeline
(
task
,
framework
=
"pt"
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment