Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
bab6ad01
"git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "3487be75ef8f0d51c51208f266644fc04a947085"
Commit
bab6ad01
authored
Oct 24, 2019
by
Lysandre
Browse files
run_tf_glue works with all tasks
parent
ae1d03fc
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
46 additions
and
8 deletions
+46
-8
examples/run_tf_glue.py
examples/run_tf_glue.py
+35
-8
transformers/data/processors/glue.py
transformers/data/processors/glue.py
+4
-0
transformers/data/processors/utils.py
transformers/data/processors/utils.py
+7
-0
No files found.
examples/run_tf_glue.py
View file @
bab6ad01
import
os
import
os
import
tensorflow
as
tf
import
tensorflow
as
tf
import
tensorflow_datasets
import
tensorflow_datasets
from
transformers
import
BertTokenizer
,
TFBertForSequenceClassification
,
glue_convert_examples_to_features
,
BertForSequenceClassification
from
transformers
import
BertTokenizer
,
TFBertForSequenceClassification
,
BertConfig
,
glue_convert_examples_to_features
,
BertForSequenceClassification
,
glue_processors
# script parameters
# script parameters
BATCH_SIZE
=
32
BATCH_SIZE
=
32
EVAL_BATCH_SIZE
=
BATCH_SIZE
*
2
EVAL_BATCH_SIZE
=
BATCH_SIZE
*
2
USE_XLA
=
False
USE_XLA
=
False
USE_AMP
=
False
USE_AMP
=
False
EPOCHS
=
3
TASK
=
"mrpc"
if
TASK
==
"sst-2"
:
TFDS_TASK
=
"sst2"
elif
TASK
==
"sts-b"
:
TFDS_TASK
=
"stsb"
else
:
TFDS_TASK
=
TASK
num_labels
=
len
(
glue_processors
[
TASK
]().
get_labels
())
print
(
num_labels
)
tf
.
config
.
optimizer
.
set_jit
(
USE_XLA
)
tf
.
config
.
optimizer
.
set_jit
(
USE_XLA
)
tf
.
config
.
optimizer
.
set_experimental_options
({
"auto_mixed_precision"
:
USE_AMP
})
tf
.
config
.
optimizer
.
set_experimental_options
({
"auto_mixed_precision"
:
USE_AMP
})
# Load tokenizer and model from pretrained model/vocabulary
# Load tokenizer and model from pretrained model/vocabulary. Specify the number of labels to classify (2+: classification, 1: regression)
config
=
BertConfig
.
from_pretrained
(
"bert-base-cased"
,
num_labels
=
num_labels
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
'bert-base-cased'
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
'bert-base-cased'
)
model
=
TFBertForSequenceClassification
.
from_pretrained
(
'bert-base-cased'
)
model
=
TFBertForSequenceClassification
.
from_pretrained
(
'bert-base-cased'
,
config
=
config
)
# Load dataset via TensorFlow Datasets
# Load dataset via TensorFlow Datasets
data
,
info
=
tensorflow_datasets
.
load
(
'glue/
mrpc
'
,
with_info
=
True
)
data
,
info
=
tensorflow_datasets
.
load
(
f
'glue/
{
TFDS_TASK
}
'
,
with_info
=
True
)
train_examples
=
info
.
splits
[
'train'
].
num_examples
train_examples
=
info
.
splits
[
'train'
].
num_examples
# MNLI expects either validation_matched or validation_mismatched
valid_examples
=
info
.
splits
[
'validation'
].
num_examples
valid_examples
=
info
.
splits
[
'validation'
].
num_examples
# Prepare dataset for GLUE as a tf.data.Dataset instance
# Prepare dataset for GLUE as a tf.data.Dataset instance
train_dataset
=
glue_convert_examples_to_features
(
data
[
'train'
],
tokenizer
,
128
,
'mrpc'
)
train_dataset
=
glue_convert_examples_to_features
(
data
[
'train'
],
tokenizer
,
128
,
TASK
)
valid_dataset
=
glue_convert_examples_to_features
(
data
[
'validation'
],
tokenizer
,
128
,
'mrpc'
)
# MNLI expects either validation_matched or validation_mismatched
valid_dataset
=
glue_convert_examples_to_features
(
data
[
'validation'
],
tokenizer
,
128
,
TASK
)
train_dataset
=
train_dataset
.
shuffle
(
128
).
batch
(
BATCH_SIZE
).
repeat
(
-
1
)
train_dataset
=
train_dataset
.
shuffle
(
128
).
batch
(
BATCH_SIZE
).
repeat
(
-
1
)
valid_dataset
=
valid_dataset
.
batch
(
EVAL_BATCH_SIZE
)
valid_dataset
=
valid_dataset
.
batch
(
EVAL_BATCH_SIZE
)
...
@@ -32,7 +50,13 @@ opt = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08)
...
@@ -32,7 +50,13 @@ opt = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08)
if
USE_AMP
:
if
USE_AMP
:
# loss scaling is currently required when using mixed precision
# loss scaling is currently required when using mixed precision
opt
=
tf
.
keras
.
mixed_precision
.
experimental
.
LossScaleOptimizer
(
opt
,
'dynamic'
)
opt
=
tf
.
keras
.
mixed_precision
.
experimental
.
LossScaleOptimizer
(
opt
,
'dynamic'
)
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
)
if
num_labels
==
1
:
loss
=
tf
.
keras
.
losses
.
MeanSquaredError
()
else
:
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
)
metric
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
'accuracy'
)
metric
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
'accuracy'
)
model
.
compile
(
optimizer
=
opt
,
loss
=
loss
,
metrics
=
[
metric
])
model
.
compile
(
optimizer
=
opt
,
loss
=
loss
,
metrics
=
[
metric
])
...
@@ -40,7 +64,7 @@ model.compile(optimizer=opt, loss=loss, metrics=[metric])
...
@@ -40,7 +64,7 @@ model.compile(optimizer=opt, loss=loss, metrics=[metric])
train_steps
=
train_examples
//
BATCH_SIZE
train_steps
=
train_examples
//
BATCH_SIZE
valid_steps
=
valid_examples
//
EVAL_BATCH_SIZE
valid_steps
=
valid_examples
//
EVAL_BATCH_SIZE
history
=
model
.
fit
(
train_dataset
,
epochs
=
2
,
steps_per_epoch
=
train_steps
,
history
=
model
.
fit
(
train_dataset
,
epochs
=
EPOCHS
,
steps_per_epoch
=
train_steps
,
validation_data
=
valid_dataset
,
validation_steps
=
valid_steps
)
validation_data
=
valid_dataset
,
validation_steps
=
valid_steps
)
# Save TF2 model
# Save TF2 model
...
@@ -57,6 +81,9 @@ sentence_2 = 'His findings were not compatible with this research.'
...
@@ -57,6 +81,9 @@ sentence_2 = 'His findings were not compatible with this research.'
inputs_1
=
tokenizer
.
encode_plus
(
sentence_0
,
sentence_1
,
add_special_tokens
=
True
,
return_tensors
=
'pt'
)
inputs_1
=
tokenizer
.
encode_plus
(
sentence_0
,
sentence_1
,
add_special_tokens
=
True
,
return_tensors
=
'pt'
)
inputs_2
=
tokenizer
.
encode_plus
(
sentence_0
,
sentence_2
,
add_special_tokens
=
True
,
return_tensors
=
'pt'
)
inputs_2
=
tokenizer
.
encode_plus
(
sentence_0
,
sentence_2
,
add_special_tokens
=
True
,
return_tensors
=
'pt'
)
del
inputs_1
[
"special_tokens_mask"
]
del
inputs_2
[
"special_tokens_mask"
]
pred_1
=
pytorch_model
(
**
inputs_1
)[
0
].
argmax
().
item
()
pred_1
=
pytorch_model
(
**
inputs_1
)[
0
].
argmax
().
item
()
pred_2
=
pytorch_model
(
**
inputs_2
)[
0
].
argmax
().
item
()
pred_2
=
pytorch_model
(
**
inputs_2
)[
0
].
argmax
().
item
()
print
(
'sentence_1 is'
,
'a paraphrase'
if
pred_1
else
'not a paraphrase'
,
'of sentence_0'
)
print
(
'sentence_1 is'
,
'a paraphrase'
if
pred_1
else
'not a paraphrase'
,
'of sentence_0'
)
...
...
transformers/data/processors/glue.py
View file @
bab6ad01
...
@@ -76,10 +76,14 @@ def glue_convert_examples_to_features(examples, tokenizer,
...
@@ -76,10 +76,14 @@ def glue_convert_examples_to_features(examples, tokenizer,
features
=
[]
features
=
[]
for
(
ex_index
,
example
)
in
enumerate
(
examples
):
for
(
ex_index
,
example
)
in
enumerate
(
examples
):
if
ex_index
==
10
:
break
if
ex_index
%
10000
==
0
:
if
ex_index
%
10000
==
0
:
logger
.
info
(
"Writing example %d"
%
(
ex_index
))
logger
.
info
(
"Writing example %d"
%
(
ex_index
))
if
is_tf_dataset
:
if
is_tf_dataset
:
example
=
processor
.
get_example_from_tensor_dict
(
example
)
example
=
processor
.
get_example_from_tensor_dict
(
example
)
example
=
processor
.
tfds_map
(
example
)
inputs
=
tokenizer
.
encode_plus
(
inputs
=
tokenizer
.
encode_plus
(
example
.
text_a
,
example
.
text_a
,
...
...
transformers/data/processors/utils.py
View file @
bab6ad01
...
@@ -107,6 +107,13 @@ class DataProcessor(object):
...
@@ -107,6 +107,13 @@ class DataProcessor(object):
"""Gets the list of labels for this data set."""
"""Gets the list of labels for this data set."""
raise
NotImplementedError
()
raise
NotImplementedError
()
def
tfds_map
(
self
,
example
):
"""Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are.
This method converts examples to the correct format."""
if
len
(
self
.
get_labels
())
>
1
:
example
.
label
=
self
.
get_labels
()[
int
(
example
.
label
)]
return
example
@
classmethod
@
classmethod
def
_read_tsv
(
cls
,
input_file
,
quotechar
=
None
):
def
_read_tsv
(
cls
,
input_file
,
quotechar
=
None
):
"""Reads a tab separated value file."""
"""Reads a tab separated value file."""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment