Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
b9c77b98
Commit
b9c77b98
authored
Jan 17, 2019
by
thomwolf
Browse files
fix transposition in model conversion and memory initialization
parent
009101de
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
7 additions
and
8 deletions
+7
-8
pytorch_pretrained_bert/convert_transfo_xl_checkpoint_to_pytorch.py
...etrained_bert/convert_transfo_xl_checkpoint_to_pytorch.py
+1
-3
pytorch_pretrained_bert/modeling_transfo_xl.py
pytorch_pretrained_bert/modeling_transfo_xl.py
+6
-5
No files found.
pytorch_pretrained_bert/convert_transfo_xl_checkpoint_to_pytorch.py
View file @
b9c77b98
...
...
@@ -93,8 +93,6 @@ def build_tf_to_pytorch_map(model, config):
# Relative positioning biases
if
config
.
untie_r
:
layer_str
=
"transformer/r_r_bias"
layer_str_2
=
"transformer/r_w_bias"
r_r_list
=
[]
r_w_list
=
[]
for
b
in
model
.
layers
:
...
...
@@ -158,7 +156,7 @@ def convert_transfo_xl_checkpoint_to_pytorch(tf_checkpoint_path,
array
=
tf_weights
[
name
]
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if
'kernel'
in
name
or
'proj
_W
'
in
name
:
if
'kernel'
in
name
or
'proj'
in
name
:
array
=
np
.
transpose
(
array
)
if
(
'r_r_bias'
in
name
or
'r_w_bias'
in
name
)
and
len
(
pointer
)
>
1
:
# Here we will split the TF weigths
...
...
pytorch_pretrained_bert/modeling_transfo_xl.py
View file @
b9c77b98
...
...
@@ -447,10 +447,10 @@ class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
if
attn_mask
is
not
None
and
attn_mask
.
any
().
item
():
if
attn_mask
.
dim
()
==
2
:
attn_score
=
attn_score
.
float
().
masked_fill
(
attn_mask
[
None
,:,:,
None
],
-
float
(
'inf'
)
).
type_as
(
attn_score
)
attn_mask
[
None
,:,:,
None
],
-
1e30
).
type_as
(
attn_score
)
elif
attn_mask
.
dim
()
==
3
:
attn_score
=
attn_score
.
float
().
masked_fill
(
attn_mask
[:,:,:,
None
],
-
float
(
'inf'
)
).
type_as
(
attn_score
)
attn_mask
[:,:,:,
None
],
-
1e30
).
type_as
(
attn_score
)
# [qlen x klen x bsz x n_head]
attn_prob
=
F
.
softmax
(
attn_score
,
dim
=
1
)
...
...
@@ -947,12 +947,13 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
self
.
mem_len
=
mem_len
self
.
ext_len
=
ext_len
def
init_mems
(
self
):
def
init_mems
(
self
,
data
):
if
self
.
mem_len
>
0
:
mems
=
[]
param
=
next
(
self
.
parameters
())
for
i
in
range
(
self
.
n_layer
+
1
):
empty
=
torch
.
empty
(
0
,
dtype
=
param
.
dtype
,
device
=
param
.
device
)
empty
=
torch
.
zeros
(
self
.
mem_len
,
data
.
size
(
1
),
self
.
config
.
d_model
,
dtype
=
param
.
dtype
,
device
=
param
.
device
)
mems
.
append
(
empty
)
return
mems
...
...
@@ -1081,7 +1082,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
# So, have to initialize size(0) mems inside the model forward.
# Moreover, have to return new_mems to allow nn.DataParallel to piece
# them together.
if
not
mems
:
mems
=
self
.
init_mems
()
if
not
mems
:
mems
=
self
.
init_mems
(
data
)
hidden
,
new_mems
=
self
.
_forward
(
data
,
mems
=
mems
)
if
target
is
None
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment