Unverified Commit b38d552a authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[Generate] Add bad words list argument to the generate function (#3367)

* add bad words list

* make style

* add bad_words_tokens

* make style

* better naming

* make style

* fix typo
parent ae6834e0
......@@ -80,6 +80,7 @@ class PretrainedConfig(object):
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
self.length_penalty = kwargs.pop("length_penalty", 1.0)
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
# Fine-tuning task arguments
......
......@@ -467,6 +467,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
top_k=None,
top_p=None,
repetition_penalty=None,
bad_words_ids=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
......@@ -532,6 +533,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
no_repeat_ngram_size: (`optional`) int
If set to int > 0, all ngrams of size `no_repeat_ngram_size` can only occur once.
bad_words_ids: (`optional`) list of lists of int
`bad_words_ids` contains tokens that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use `tokenizer.encode(bad_word, add_prefix_space=True)`.
num_return_sequences: (`optional`) int
The number of independently computed returned sequences for each element in the batch. Default to 1.
......@@ -582,6 +586,12 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer
model = TFAutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from S3 and cache.
input_context = 'My cute dog' # "Legal" is one of the control codes for ctrl
bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']]
input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context
outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated
"""
# We cannot generate if the model does not have a LM head
......@@ -607,6 +617,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
......@@ -641,6 +652,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
assert (
isinstance(num_return_sequences, int) and num_return_sequences > 0
), "`num_return_sequences` should be a strictely positive integer."
assert (
bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"
if input_ids is None:
assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
......@@ -742,6 +756,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
......@@ -766,6 +781,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
......@@ -790,6 +806,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
top_p,
repetition_penalty,
no_repeat_ngram_size,
bad_words_ids,
bos_token_id,
pad_token_id,
eos_token_id,
......@@ -828,7 +845,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
if no_repeat_ngram_size > 0:
# calculate a list of banned tokens to prevent repetitively generating the same ngrams
# from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
banned_tokens = calc_banned_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len)
banned_tokens = calc_banned_ngram_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len)
# create banned_tokens boolean mask
banned_tokens_indices_mask = []
for banned_tokens_slice in banned_tokens:
......@@ -840,6 +857,20 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
next_token_logits, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf")
)
if bad_words_ids is not None:
# calculate a list of banned tokens according to bad words
banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)
banned_tokens_indices_mask = []
for banned_tokens_slice in banned_tokens:
banned_tokens_indices_mask.append(
[True if token in banned_tokens_slice else False for token in range(vocab_size)]
)
next_token_logits = set_tensor_by_indices_to_value(
next_token_logits, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf")
)
# set eos token prob to zero if min_length is not reached
if eos_token_id is not None and cur_len < min_length:
# create eos_token_id boolean mask
......@@ -936,6 +967,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
top_p,
repetition_penalty,
no_repeat_ngram_size,
bad_words_ids,
bos_token_id,
pad_token_id,
decoder_start_token_id,
......@@ -1012,7 +1044,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
# calculate a list of banned tokens to prevent repetitively generating the same ngrams
# from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
num_batch_hypotheses = batch_size * num_beams
banned_tokens = calc_banned_tokens(input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len)
banned_tokens = calc_banned_ngram_tokens(
input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len
)
# create banned_tokens boolean mask
banned_tokens_indices_mask = []
for banned_tokens_slice in banned_tokens:
......@@ -1024,6 +1058,20 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
scores, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf")
)
if bad_words_ids is not None:
# calculate a list of banned tokens according to bad words
banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)
banned_tokens_indices_mask = []
for banned_tokens_slice in banned_tokens:
banned_tokens_indices_mask.append(
[True if token in banned_tokens_slice else False for token in range(vocab_size)]
)
scores = set_tensor_by_indices_to_value(
scores, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf")
)
assert shape_list(scores) == [batch_size * num_beams, vocab_size]
if do_sample:
......@@ -1243,7 +1291,7 @@ def _create_next_token_logits_penalties(input_ids, logits, repetition_penalty):
return tf.convert_to_tensor(token_penalties, dtype=tf.float32)
def calc_banned_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len):
def calc_banned_ngram_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len):
# Copied from fairseq for no_repeat_ngram in beam_search"""
if cur_len + 1 < no_repeat_ngram_size:
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
......@@ -1266,6 +1314,42 @@ def calc_banned_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len)
return banned_tokens
def calc_banned_bad_words_ids(prev_input_ids, bad_words_ids):
banned_tokens = []
def _tokens_match(prev_tokens, tokens):
if len(tokens) == 0:
# if bad word tokens is just one token always ban it
return True
if len(tokens) > len(prev_input_ids):
# if bad word tokens are longer then prev input_ids they can't be equal
return False
if prev_tokens[-len(tokens) :] == tokens:
# if tokens match
return True
else:
return False
for prev_input_ids_slice in prev_input_ids:
banned_tokens_slice = []
for banned_token_seq in bad_words_ids:
assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format(
bad_words_ids
)
if _tokens_match(prev_input_ids_slice.numpy().tolist(), banned_token_seq[:-1]) is False:
# if tokens do not match continue
continue
banned_tokens_slice.append(banned_token_seq[-1])
banned_tokens.append(banned_tokens_slice)
return banned_tokens
def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
......
......@@ -667,6 +667,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
top_k=None,
top_p=None,
repetition_penalty=None,
bad_words_ids=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
......@@ -731,6 +732,8 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
no_repeat_ngram_size: (`optional`) int
If set to int > 0, all ngrams of size `no_repeat_ngram_size` can only occur once.
bad_words_ids: (`optional`) list of lists of int
`bad_words_ids` contains tokens that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use `tokenizer.encode(bad_word, add_prefix_space=True)`.
num_return_sequences: (`optional`) int
The number of independently computed returned sequences for each element in the batch. Default to 1.
......@@ -782,6 +785,12 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer
model = AutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from S3 and cache.
input_context = 'My cute dog' # "Legal" is one of the control codes for ctrl
bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']]
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated
"""
# We cannot generate if the model does not have a LM head
......@@ -807,6 +816,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
......@@ -844,6 +854,9 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
assert (
isinstance(num_return_sequences, int) and num_return_sequences > 0
), "`num_return_sequences` should be a strictly positive integer."
assert (
bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"
if input_ids is None:
assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
......@@ -964,6 +977,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
decoder_start_token_id=decoder_start_token_id,
......@@ -988,6 +1002,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
decoder_start_token_id=decoder_start_token_id,
......@@ -1011,6 +1026,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
top_p,
repetition_penalty,
no_repeat_ngram_size,
bad_words_ids,
bos_token_id,
pad_token_id,
eos_token_id,
......@@ -1045,7 +1061,14 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
if no_repeat_ngram_size > 0:
# calculate a list of banned tokens to prevent repetitively generating the same ngrams
# from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
banned_tokens = calc_banned_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len)
banned_tokens = calc_banned_ngram_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len)
for batch_idx in range(batch_size):
next_token_logits[batch_idx, banned_tokens[batch_idx]] = -float("inf")
if bad_words_ids is not None:
# calculate a list of banned tokens according to bad words
banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)
for batch_idx in range(batch_size):
next_token_logits[batch_idx, banned_tokens[batch_idx]] = -float("inf")
......@@ -1121,6 +1144,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
top_p,
repetition_penalty,
no_repeat_ngram_size,
bad_words_ids,
bos_token_id,
pad_token_id,
eos_token_id,
......@@ -1187,12 +1211,19 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
# calculate a list of banned tokens to prevent repetitively generating the same ngrams
num_batch_hypotheses = batch_size * num_beams
# from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
banned_batch_tokens = calc_banned_tokens(
banned_batch_tokens = calc_banned_ngram_tokens(
input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len
)
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
if bad_words_ids is not None:
# calculate a list of banned tokens according to bad words
banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)
for i, banned_tokens in enumerate(banned_tokens):
scores[i, banned_tokens] = -float("inf")
assert scores.shape == (batch_size * num_beams, vocab_size), "Shapes of scores: {} != {}".format(
scores.shape, (batch_size * num_beams, vocab_size)
)
......@@ -1397,7 +1428,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
return past
def calc_banned_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len):
def calc_banned_ngram_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len):
# Copied from fairseq for no_repeat_ngram in beam_search"""
if cur_len + 1 < no_repeat_ngram_size:
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
......@@ -1420,6 +1451,42 @@ def calc_banned_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len)
return banned_tokens
def calc_banned_bad_words_ids(prev_input_ids, bad_words_ids):
banned_tokens = []
def _tokens_match(prev_tokens, tokens):
if len(tokens) == 0:
# if bad word tokens is just one token always ban it
return True
if len(tokens) > len(prev_input_ids):
# if bad word tokens are longer then prev input_ids they can't be equal
return False
if prev_tokens[-len(tokens) :] == tokens:
# if tokens match
return True
else:
return False
for prev_input_ids_slice in prev_input_ids:
banned_tokens_slice = []
for banned_token_seq in bad_words_ids:
assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format(
bad_words_ids
)
if _tokens_match(prev_input_ids_slice.tolist(), banned_token_seq[:-1]) is False:
# if tokens do not match continue
continue
banned_tokens_slice.append(banned_token_seq[-1])
banned_tokens.append(banned_tokens_slice)
return banned_tokens
def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
......
......@@ -641,14 +641,14 @@ class ModelTesterMixin:
with self.assertRaises(AssertionError):
model.generate(do_sample=True, max_length=5)
# batch_size = 1
self._check_generated_tokens(model.generate(input_ids, do_sample=True))
self._check_generated_ids(model.generate(input_ids, do_sample=True))
# batch_size = 1, num_beams > 1
self._check_generated_tokens(model.generate(input_ids, do_sample=True, num_beams=3))
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=3))
else:
# batch_size = 1
self._check_generated_tokens(model.generate(do_sample=True, max_length=5))
self._check_generated_ids(model.generate(do_sample=True, max_length=5))
# batch_size = 1, num_beams > 1
self._check_generated_tokens(model.generate(do_sample=True, max_length=5, num_beams=3))
self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=3))
with self.assertRaises(AssertionError):
# generating multiple sequences when greedy no beam generation
......@@ -660,24 +660,52 @@ class ModelTesterMixin:
model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)
# batch_size > 1, sample
self._check_generated_tokens(model.generate(input_ids, do_sample=True, num_return_sequences=3))
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=3))
# batch_size > 1, greedy
self._check_generated_tokens(model.generate(input_ids, do_sample=False))
self._check_generated_ids(model.generate(input_ids, do_sample=False))
# batch_size > 1, num_beams > 1, sample
self._check_generated_tokens(
model.generate(input_ids, do_sample=True, num_beams=3, num_return_sequences=3,)
)
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=3, num_return_sequences=3,))
# batch_size > 1, num_beams > 1, greedy
self._check_generated_tokens(
model.generate(input_ids, do_sample=False, num_beams=3, num_return_sequences=3)
self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=3, num_return_sequences=3))
# check bad words tokens language generation
bad_words_ids = [
ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(-1).tolist(),
ids_tensor((2, 1), self.model_tester.vocab_size).squeeze(-1).tolist(),
]
# sampling
output_tokens = model.generate(
input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=3
)
generated_ids = output_tokens[:, input_ids.shape[-1] :]
self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
def _check_generated_tokens(self, output_ids):
# beam search
output_tokens = model.generate(
input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=3, num_return_sequences=3
)
generated_ids = output_tokens[:, input_ids.shape[-1] :]
self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
def _check_generated_ids(self, output_ids):
for token_id in output_ids[0].tolist():
self.assertGreaterEqual(token_id, 0)
self.assertLess(token_id, self.model_tester.vocab_size)
def _check_match_tokens(self, generated_ids, bad_words_ids):
# for all bad word tokens
for bad_word_ids in bad_words_ids:
# for all slices in batch
for generated_ids_slice in generated_ids:
# for all word idx
for i in range(len(bad_word_ids), len(generated_ids_slice)):
# if tokens match
if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
return True
return False
global_rng = random.Random()
......
......@@ -427,14 +427,14 @@ class TFModelTesterMixin:
with self.assertRaises(AssertionError):
model.generate(do_sample=True, max_length=5)
# batch_size = 1
self._check_generated_tokens(model.generate(input_ids, do_sample=True))
self._check_generated_ids(model.generate(input_ids, do_sample=True))
# batch_size = 1, num_beams > 1
self._check_generated_tokens(model.generate(input_ids, do_sample=True, num_beams=3))
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=3))
else:
# batch_size = 1
self._check_generated_tokens(model.generate(do_sample=True, max_length=5))
self._check_generated_ids(model.generate(do_sample=True, max_length=5))
# batch_size = 1, num_beams > 1
self._check_generated_tokens(model.generate(do_sample=True, max_length=5, num_beams=3))
self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=3))
with self.assertRaises(AssertionError):
# generating multiple sequences when greedy no beam generation
......@@ -446,24 +446,52 @@ class TFModelTesterMixin:
model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)
# batch_size > 1, sample
self._check_generated_tokens(model.generate(input_ids, do_sample=True, num_return_sequences=3))
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=3))
# batch_size > 1, greedy
self._check_generated_tokens(model.generate(input_ids, do_sample=False))
self._check_generated_ids(model.generate(input_ids, do_sample=False))
# batch_size > 1, num_beams > 1, sample
self._check_generated_tokens(
model.generate(input_ids, do_sample=True, num_beams=3, num_return_sequences=3,)
)
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=3, num_return_sequences=3,))
# batch_size > 1, num_beams > 1, greedy
self._check_generated_tokens(
model.generate(input_ids, do_sample=False, num_beams=3, num_return_sequences=3)
self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=3, num_return_sequences=3))
# check bad words tokens language generation
bad_words_ids = [
tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), -1).numpy().tolist(),
tf.squeeze(ids_tensor((2, 1), self.model_tester.vocab_size), -1).numpy().tolist(),
]
# sampling
output_tokens = model.generate(
input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=3
)
generated_ids = output_tokens[:, input_ids.shape[-1] :]
self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
def _check_generated_tokens(self, output_ids):
# beam search
output_tokens = model.generate(
input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=3, num_return_sequences=3
)
generated_ids = output_tokens[:, input_ids.shape[-1] :]
self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
def _check_generated_ids(self, output_ids):
for token_id in output_ids[0].numpy().tolist():
self.assertGreaterEqual(token_id, 0)
self.assertLess(token_id, self.model_tester.vocab_size)
def _check_match_tokens(self, generated_ids, bad_words_ids):
# for all bad word tokens
for bad_word_ids in bad_words_ids:
# for all slices in batch
for generated_ids_slice in generated_ids:
# for all word idx
for i in range(len(bad_word_ids), len(generated_ids_slice)):
# if tokens match
if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
return True
return False
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment