Unverified Commit b242d0f2 authored by Arindam Jati's avatar Arindam Jati Committed by GitHub
Browse files

[Time series] Add PatchTSMixer (#26247)



* patchtsmixer initial commit

* x,y->context_values,target_values, unittest addded

* cleanup code

* minor

* return hidden states

* model tests, partial integration tests

* ettm notebook temporary

* minor

* config mask bug fix, tests updated

* final ETT notebooks

* add selfattn

* init

* added docstrings

* PatchTSMixerForPretraining -> PatchTSMixerForMaskPretraining

* functionality tests added

* add start and input docstrings

* docstring edits

* testcase edits

* minor changes

* docstring error fixed

* ran make fixup

* finalize integration tests and docs

* minor

* cleaned gitignore

* added dataclass decorator, ran black formatter

* ran ruff

* formatting

* add slow decorator

* renamed in_Channel to input_size and default to 1

* shorten dataclass names

* use smaller model for testing

* moved the 3 heads to the modeling file

* use scalers instead of revin

* support forecast_channel_indices

* fix regression scaling

* undo reg. scaling

* removed unneeded classes

* forgot missing

* add more layers

* add copied positional_encoding

* use patchmask from patchtst

* removed dependency on layers directory

* formatting

* set seed

* removed unused imports

* fixed forward signature test

* adding distributional head for PatchTSMixerForecasting

* add generate to forecast

* testcases for generate

* add generate and distributional head for regression

* raise Exception for negative values for neg binominal distribution

* formatting changes

* remove copied from patchtst and add TODO for test passing

* make copies

* doc edits

* minor changes

* format issues

* minor changes

* minor changes

* format docstring

* change some class names to PatchTSMixer + class name

Transpose to PatchTSMixerTranspose
GatedAttention to PatchTSMixerGatedAttention

* change NormLayer to PatchTSMixerNormLayer

* change MLP to PatchTSMixerMLP

* change PatchMixer to PatchMixerBlock, FeatureMixer to FeatureMixerBlock

* change ChannelFeatureMixer to ChannelFeatureMixerBlock

* change PatchMasking to PatchTSMixerMasking

* change Patchify to PatchTSMixerPatchify

* list to `list`

* fix docstrings

* formatting

* change bs to batch_size, edit forecast_masking

* edit random_masking

* change variable name and update docstring in PatchTSMixerMasking

* change variable name and update docstring in InjectScalerStatistics4D

* update forward call in PatchTSMixerTranspose

* change variable name and update docstring in PatchTSMixerNormLayer

* change variable name and update docstring in PatchTSMixerMLP

* change variable name and update docstring in ChannelFeatureMixerBlock

* formatting

* formatting issues

* docstring issue

* fixed observed_mask type in docstrings

* use FloatTensor type

* formatting

* fix rescaling issue in forecasting, fixed integration tests

* add docstring from decorator

* fix docstring

* Update README.md
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/configuration_patchtsmixer.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/configuration_patchtsmixer.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* PatchTSMixerChannelFeatureMixerBlock

* formatting

* ForPretraining

* use num_labels instead of n_classes

* remove commented out code

* docstring fixed

* nn.functional used instead of one letter F

* x_tmp renamed

* one letter variable x removed from forward calls

* one letter variable y removed

* remove commented code

* rename patch_size, in_channels, PatchTSMixerBackbone

* add config to heads

* add config to heads tests

* code reafactoring to use config instead of passing individual params

* Cdocstring fixes part 1

* docstring fixes part 2

* removed logger.debug

* context_values -> past_values

* formatting changes

* pe -> positional_encoding

* removed unused target variable

* self.mode logic fixed

* formatting change

* edit docstring and var name

* change n_targets to num_targets

* rename input_size to num_input_channels

* add head names with prefix PatchTSMixer

* edit docstring in PatchTSMixerForRegression

* fix var name change in testcases

* add PatchTSMixerAttention

* return dict for all exposed classes, test cases added

* format

* move loss function to forward call

* make style

* adding return dict/tuple

* make repo-consistency

* remove flatten mode

* code refactoring

* rename data

* remove PatchTSMixer and keep only PatchTSMixerEncoder

* docstring fixes

* removed unused code

* format

* format

* remove contiguous and formatting changes

* remove model description from config

* replace asserts with ValueError

* remove nn.Sequential from PatchTSMixerNormLayer

* replace if-else with map

* remove all nn.Sequential

* format

* formatting

* fix gradient_checkpointing error after merge, and formatting

* make fix-copies

* remove comments

* reshape

* doesnt support gradient checkpointing

* corect Patchify

* masking updates

* batchnorm copy from

* format checks

* scaler edits

* remove comments

* format changes

* remove self.config

* correct class PatchTSMixerMLP(nn.Module):

* makr fix

* doc updates

* fix-copies

* scaler class correction

* doc edits

* scaler edits

* update readme with links

* injectstatistics add

* fix-copies

* add norm_eps option to LayerNorm

* format changes

* fix copies

* correct make copies

* use parametrize

* fix doc string

* add docs to toctree

* make style

* doc segmenting

* docstring edit

* change forecast to prediction

* edit doc

* doc edits

* remove PatchTSMixerTranspose

* add PatchTSMixerPositionalEncoding and init position_enc

* remove positional_encoding

* edit forecast_masking, remove forecast_mask_ratios

* fix broken code

* var rename target_values -> future_values

* num_features -> d_model

* fix broken code after master merge

* repo consistency

* use postional embedding

* prediction_logits -> prediction_outputs, make fix-copies

* uncommented @slow

* minor changes

* loss first in tuple

* tuple and dict same ordering

* style edits

* minor changes

* dict/tuple consistent enablement

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>

* fix formatting

* formatting

* usage tip

* test on cpu only

* add sample usage

* change PatchTSMixerForClassification to PatchTSMixerForTimeSeriesClassification

* push changes

* fix copies

* std scaling set to default True case

* minor changes

* stylechanges

---------
Co-authored-by: default avatarArindam Jati <arindam.jati@ibm.com>
Co-authored-by: default avatarvijaye12 <vijaye12@in.ibm.com>
Co-authored-by: default avatarKashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: default avatarnnguyen <nnguyen@us.ibm.com>
Co-authored-by: default avatarvijaye12 <vijaykr.e@gmail.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: default avatarNam Nguyen <namctin@gmail.com>
Co-authored-by: default avatarWesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
parent e5c12c03
......@@ -440,6 +440,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
......
......@@ -415,6 +415,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
......
......@@ -389,6 +389,7 @@ conda install -c huggingface transformers
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [विज़न ट्रांसफॉर्मर्स के साथ सिंपल ओपन-वोकैबुलरी ऑब्जेक्ट डिटेक्शन](https:/ /arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया।
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI से) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. द्वाराअनुसंधान पत्र [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) के साथ जारी किया गया
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** ( IBM Research से) Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) के साथ जारी किया गया
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM से) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) के साथ जारी किया गया
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [लंबे इनपुट सारांश के लिए ट्रांसफ़ॉर्मरों को बेहतर तरीके से एक्सटेंड करना](https://arxiv .org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा।
......
......@@ -449,6 +449,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068)
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230)
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. から公開された研究論文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** ( IBM Research から) Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf)
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM から) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf)
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347)
......
......@@ -364,6 +364,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI 에서 제공)은 Matthias Minderer, Alexey Gritsenko, Neil Houlsby.의 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)논문과 함께 발표했습니다.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** ( IBM Research 에서 제공)은 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf)논문과 함께 발표했습니다.
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM 에서 제공)은 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf)논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다.
......
......@@ -388,6 +388,7 @@ conda install -c huggingface transformers
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (来自 Google AI) 伴随论文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) 由 Matthias Minderer, Alexey Gritsenko, Neil Houlsby 发布。
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (来自 IBM Research) 伴随论文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) 由 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (来自 IBM) 伴随论文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) 由 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
......
......@@ -400,6 +400,7 @@ conda install -c huggingface transformers
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
......
......@@ -757,6 +757,8 @@
title: Autoformer
- local: model_doc/informer
title: Informer
- local: model_doc/patchtsmixer
title: PatchTSMixer
- local: model_doc/patchtst
title: PatchTST
- local: model_doc/time_series_transformer
......
......@@ -214,6 +214,7 @@ Flax), PyTorch, and/or TensorFlow.
| [OPT](model_doc/opt) | ✅ | ✅ | ✅ |
| [OWL-ViT](model_doc/owlvit) | ✅ | ❌ | ❌ |
| [OWLv2](model_doc/owlv2) | ✅ | ❌ | ❌ |
| [PatchTSMixer](model_doc/patchtsmixer) | ✅ | ❌ | ❌ |
| [PatchTST](model_doc/patchtst) | ✅ | ❌ | ❌ |
| [Pegasus](model_doc/pegasus) | ✅ | ✅ | ✅ |
| [PEGASUS-X](model_doc/pegasus_x) | ✅ | ❌ | ❌ |
......
<!--Copyright 2023 IBM and HuggingFace Inc. team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PatchTSMixer
## Overview
The PatchTSMixer model was proposed in [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong and Jayant Kalagnanam.
PatchTSMixer is a lightweight time-series modeling approach based on the MLP-Mixer architecture. In this HuggingFace implementation, we provide PatchTSMixer's capabilities to effortlessly facilitate lightweight mixing across patches, channels, and hidden features for effective multivariate time-series modeling. It also supports various attention mechanisms starting from simple gated attention to more complex self-attention blocks that can be customized accordingly. The model can be pretrained and subsequently used for various downstream tasks such as forecasting, classification and regression.
The abstract from the paper is the following:
*TSMixer is a lightweight neural architecture exclusively composed of multi-layer perceptron (MLP) modules designed for multivariate forecasting and representation learning on patched time series. Our model draws inspiration from the success of MLP-Mixer models in computer vision. We demonstrate the challenges involved in adapting Vision MLP-Mixer for time series and introduce empirically validated components to enhance accuracy. This includes a novel design paradigm of attaching online reconciliation heads to the MLP-Mixer backbone, for explicitly modeling the time-series properties such as hierarchy and channel-correlations. We also propose a Hybrid channel modeling approach to effectively handle noisy channel interactions and generalization across diverse datasets, a common challenge in existing patch channel-mixing methods. Additionally, a simple gated attention mechanism is introduced in the backbone to prioritize important features. By incorporating these lightweight components, we significantly enhance the learning capability of simple MLP structures, outperforming complex Transformer models with minimal computing usage. Moreover, TSMixer's modular design enables compatibility with both supervised and masked self-supervised learning methods, making it a promising building block for time-series Foundation Models. TSMixer outperforms state-of-the-art MLP and Transformer models in forecasting by a considerable margin of 8-60%. It also outperforms the latest strong benchmarks of Patch-Transformer models (by 1-2%) with a significant reduction in memory and runtime (2-3X).*
This model was contributed by [ajati](https://huggingface.co/ajati), [vijaye12](https://huggingface.co/vijaye12),
[gsinthong](https://huggingface.co/gsinthong), [namctin](https://huggingface.co/namctin),
[wmgifford](https://huggingface.co/wmgifford), [kashif](https://huggingface.co/kashif).
## Sample usage
```python
from transformers import PatchTSMixerConfig, PatchTSMixerForPrediction
from transformers import Trainer, TrainingArguments,
config = PatchTSMixerConfig(context_length = 512, prediction_length = 96)
model = PatchTSMixerForPrediction(config)
trainer = Trainer(model=model, args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset)
trainer.train()
results = trainer.evaluate(test_dataset)
```
## Usage tips
The model can also be used for time series classification and time series regression. See the respective [`PatchTSMixerForTimeSeriesClassification`] and [`PatchTSMixerForRegression`] classes.
## PatchTSMixerConfig
[[autodoc]] PatchTSMixerConfig
## PatchTSMixerModel
[[autodoc]] PatchTSMixerModel
- forward
## PatchTSMixerForPrediction
[[autodoc]] PatchTSMixerForPrediction
- forward
## PatchTSMixerForTimeSeriesClassification
[[autodoc]] PatchTSMixerForTimeSeriesClassification
- forward
## PatchTSMixerForPretraining
[[autodoc]] PatchTSMixerForPretraining
- forward
## PatchTSMixerForRegression
[[autodoc]] PatchTSMixerForRegression
- forward
\ No newline at end of file
This diff is collapsed.
......@@ -158,6 +158,7 @@ from . import (
opt,
owlv2,
owlvit,
patchtsmixer,
patchtst,
pegasus,
pegasus_x,
......
......@@ -164,6 +164,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("opt", "OPTConfig"),
("owlv2", "Owlv2Config"),
("owlvit", "OwlViTConfig"),
("patchtsmixer", "PatchTSMixerConfig"),
("patchtst", "PatchTSTConfig"),
("pegasus", "PegasusConfig"),
("pegasus_x", "PegasusXConfig"),
......@@ -380,6 +381,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
("opt", "OPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("owlv2", "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("owlvit", "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("patchtsmixer", "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("patchtst", "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pegasus_x", "PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP"),
......@@ -616,6 +618,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("opt", "OPT"),
("owlv2", "OWLv2"),
("owlvit", "OWL-ViT"),
("patchtsmixer", "PatchTSMixer"),
("patchtst", "PatchTST"),
("pegasus", "Pegasus"),
("pegasus_x", "PEGASUS-X"),
......
......@@ -18,7 +18,12 @@ import warnings
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoBackboneClass, _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .auto_factory import (
_BaseAutoBackboneClass,
_BaseAutoModelClass,
_LazyAutoMapping,
auto_class_update,
)
from .configuration_auto import CONFIG_MAPPING_NAMES
......@@ -157,6 +162,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("opt", "OPTModel"),
("owlv2", "Owlv2Model"),
("owlvit", "OwlViTModel"),
("patchtsmixer", "PatchTSMixerModel"),
("patchtst", "PatchTSTModel"),
("pegasus", "PegasusModel"),
("pegasus_x", "PegasusXModel"),
......@@ -483,7 +489,10 @@ MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("convnextv2", "ConvNextV2ForImageClassification"),
("cvt", "CvtForImageClassification"),
("data2vec-vision", "Data2VecVisionForImageClassification"),
("deit", ("DeiTForImageClassification", "DeiTForImageClassificationWithTeacher")),
(
"deit",
("DeiTForImageClassification", "DeiTForImageClassificationWithTeacher"),
),
("dinat", "DinatForImageClassification"),
("dinov2", "Dinov2ForImageClassification"),
(
......@@ -496,7 +505,10 @@ MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("efficientnet", "EfficientNetForImageClassification"),
("focalnet", "FocalNetForImageClassification"),
("imagegpt", "ImageGPTForImageClassification"),
("levit", ("LevitForImageClassification", "LevitForImageClassificationWithTeacher")),
(
"levit",
("LevitForImageClassification", "LevitForImageClassificationWithTeacher"),
),
("mobilenet_v1", "MobileNetV1ForImageClassification"),
("mobilenet_v2", "MobileNetV2ForImageClassification"),
("mobilevit", "MobileViTForImageClassification"),
......@@ -1140,12 +1152,14 @@ MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES = OrderedDict(
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
("patchtsmixer", "PatchTSMixerForTimeSeriesClassification"),
("patchtst", "PatchTSTForClassification"),
]
)
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING_NAMES = OrderedDict(
[
("patchtsmixer", "PatchTSMixerForRegression"),
("patchtst", "PatchTSTForRegression"),
]
)
......@@ -1305,7 +1319,9 @@ class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
AutoModelForSeq2SeqLM = auto_class_update(
AutoModelForSeq2SeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
AutoModelForSeq2SeqLM,
head_doc="sequence-to-sequence language modeling",
checkpoint_for_example="t5-base",
)
......
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_patchtsmixer": [
"PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"PatchTSMixerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_patchtsmixer"] = [
"PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PatchTSMixerPreTrainedModel",
"PatchTSMixerModel",
"PatchTSMixerForPretraining",
"PatchTSMixerForPrediction",
"PatchTSMixerForTimeSeriesClassification",
"PatchTSMixerForRegression",
]
if TYPE_CHECKING:
from .configuration_patchtsmixer import (
PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PatchTSMixerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_patchtsmixer import (
PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST,
PatchTSMixerForPrediction,
PatchTSMixerForPretraining,
PatchTSMixerForRegression,
PatchTSMixerForTimeSeriesClassification,
PatchTSMixerModel,
PatchTSMixerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
# coding=utf-8
# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PatchTSMixer model configuration"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"ibm/patchtsmixer-etth1-pretrain": "https://huggingface.co/ibm/patchtsmixer-etth1-pretrain/resolve/main/config.json",
}
class PatchTSMixerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PatchTSMixerModel`]. It is used to instantiate a
PatchTSMixer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the PatchTSMixer
[ibm/patchtsmixer-etth1-pretrain](https://huggingface.co/ibm/patchtsmixer-etth1-pretrain) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
context_length (`int`, *optional*, defaults to 32):
The context/history length for the input sequence.
patch_len (`int`, *optional*, defaults to 8):
The patch length for the input sequence.
num_input_channels (`int`, *optional*, defaults to 1):
Number of input variates. For Univariate, set it to 1.
patch_stride (`int`, *optional*, defaults to 8):
Determines the overlap between two consecutive patches. Set it to patch_length (or greater), if we want
non-overlapping patches.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples to generate in parallel for probabilistic forecast.
d_model (`int`, *optional*, defaults to 8):
Hidden dimension of the model. Recommended to set it as a multiple of patch_length (i.e. 2-5X of
patch_len). Larger value indicates more complex model.
expansion_factor (`int`, *optional*, defaults to 2):
Expansion factor to use inside MLP. Recommended range is 2-5. Larger value indicates more complex model.
num_layers (`int`, *optional*, defaults to 3):
Number of layers to use. Recommended range is 3-15. Larger value indicates more complex model.
dropout (`float`, *optional*, defaults to 0.2):
The dropout probability the `PatchTSMixer` backbone. Recommended range is 0.2-0.7
mode (`str`, *optional*, defaults to `"common_channel"`):
Mixer Mode. Determines how to process the channels. Allowed values: "common_channel", "mix_channel". In
"common_channel" mode, we follow Channel-independent modelling with no explicit channel-mixing. Channel
mixing happens in an implicit manner via shared weights across channels. (preferred first approach) In
"mix_channel" mode, we follow explicit channel-mixing in addition to patch and feature mixer. (preferred
approach when channel correlations are very important to model)
gated_attn (`bool`, *optional*, defaults to `True`):
Enable Gated Attention.
norm_mlp (`str`, *optional*, defaults to `"LayerNorm"`):
Normalization layer (BatchNorm or LayerNorm).
self_attn (`bool`, *optional*, defaults to `False`):
Enable Tiny self attention across patches. This can be enabled when the output of Vanilla PatchTSMixer with
gated attention is not satisfactory. Enabling this leads to explicit pair-wise attention and modelling
across patches.
self_attn_heads (`int`, *optional*, defaults to 1):
Number of self-attention heads. Works only when `self_attn` is set to `True`.
use_positional_encoding (`bool`, *optional*, defaults to `False`):
Enable the use of positional embedding for the tiny self-attention layers. Works only when `self_attn` is
set to `True`.
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
Positional encodings. Options `"random"` and `"sincos"` are supported. Works only when
`use_positional_encoding` is set to `True`
scaling (`string` or `bool`, *optional*, defaults to `"std"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
loss (`string`, *optional*, defaults to `"mse"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared
error "mse".
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
post_init (`bool`, *optional*, defaults to `False`):
Whether to use custom weight initialization from `transformers` library, or the default initialization in
`PyTorch`. Setting it to `False` performs `PyTorch` weight initialization.
norm_eps (`float`, *optional*, defaults to 1e-05):
A value added to the denominator for numerical stability of normalization.
mask_type (`str`, *optional*, defaults to `"random"`):
Type of masking to use for Masked Pretraining mode. Allowed values are "random", "forecast". In Random
masking, points are masked randomly. In Forecast masking, points are masked towards the end.
random_mask_ratio (`float`, *optional*, defaults to 0.5):
Masking ratio to use when `mask_type` is `random`. Higher value indicates more masking.
num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`):
Number of patches to be masked at the end of each batch sample. If it is an integer, all the samples in the
batch will have the same number of masked patches. If it is a list, samples in the batch will be randomly
masked by numbers defined in the list. This argument is only used for forecast pretraining.
mask_value (`float`, *optional*, defaults to `0.0`):
Mask value to use.
masked_loss (`bool`, *optional*, defaults to `True`):
Whether to compute pretraining loss only at the masked portions, or on the entire output.
channel_consistent_masking (`bool`, *optional*, defaults to `True`):
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary
across channels.
unmasked_channel_indices (`list`, *optional*):
Channels that are not masked during pretraining.
head_dropout (`float`, *optional*, defaults to 0.2):
The dropout probability the `PatchTSMixer` head.
distribution_output (`string`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or
"negative_binomial".
prediction_length (`int`, *optional*, defaults to 16):
Number of time steps to forecast for a forecasting task. Also known as the Forecast Horizon.
prediction_channel_indices (`list`, *optional*):
List of channel indices to forecast. If None, forecast all channels. Target data is expected to have all
channels and we explicitly filter the channels in prediction and target before loss computation.
num_targets (`int`, *optional*, defaults to 3):
Number of targets (dimensionality of the regressed variable) for a regression task.
output_range (`list`, *optional*):
Output range to restrict for the regression task. Defaults to None.
head_aggregation (`str`, *optional*, defaults to `"max_pool"`):
Aggregation mode to enable for classification or regression task. Allowed values are `None`, "use_last",
"max_pool", "avg_pool".
Example:
```python
>>> from transformers import PatchTSMixerConfig, PatchTSMixerModel
>>> # Initializing a default PatchTSMixer configuration
>>> configuration = PatchTSMixerConfig()
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = PatchTSMixerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "patchtsmixer"
attribute_map = {
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
# Time series specific configuration
context_length: int = 32,
patch_len: int = 8,
num_input_channels: int = 1,
patch_stride: int = 8,
num_parallel_samples: int = 100,
# General model configuration
d_model: int = 8,
expansion_factor: int = 2,
num_layers: int = 3,
dropout: float = 0.2,
mode: str = "common_channel",
gated_attn: bool = True,
norm_mlp: str = "LayerNorm",
self_attn: bool = False,
self_attn_heads: int = 1,
use_positional_encoding: bool = False,
positional_encoding_type: str = "sincos",
scaling: Optional[Union[str, bool]] = "std",
loss: str = "mse",
init_std: float = 0.02,
post_init: bool = False,
norm_eps: float = 1e-5,
# Pretrain model configuration
mask_type: str = "random",
random_mask_ratio: float = 0.5,
num_forecast_mask_patches: Optional[Union[List[int], int]] = [2],
mask_value: int = 0,
masked_loss: bool = True,
channel_consistent_masking: bool = True,
unmasked_channel_indices: Optional[List[int]] = None,
# General head configuration
head_dropout: float = 0.2,
distribution_output: str = "student_t",
# Prediction head configuration
prediction_length: int = 16,
prediction_channel_indices: list = None,
# Classification/Regression configuration
num_targets: int = 3,
output_range: list = None,
head_aggregation: str = "max_pool",
**kwargs,
):
self.num_input_channels = num_input_channels
self.context_length = context_length
self.patch_length = patch_len
self.patch_stride = patch_stride
self.d_model = d_model
self.expansion_factor = expansion_factor
self.num_layers = num_layers
self.dropout = dropout
self.mode = mode
self.gated_attn = gated_attn
self.norm_mlp = norm_mlp
self.scaling = scaling
self.head_dropout = head_dropout
self.num_patches = (max(context_length, patch_len) - patch_len) // patch_stride + 1
self.mask_type = mask_type
self.random_mask_ratio = random_mask_ratio
self.num_forecast_mask_patches = num_forecast_mask_patches
self.mask_value = mask_value
self.channel_consistent_masking = channel_consistent_masking
self.masked_loss = masked_loss
self.patch_last = True
self.use_positional_encoding = use_positional_encoding
self.positional_encoding_type = positional_encoding_type
self.prediction_length = prediction_length
self.prediction_channel_indices = prediction_channel_indices
self.num_targets = num_targets
self.output_range = output_range
self.head_aggregation = head_aggregation
self.self_attn = self_attn
self.self_attn_heads = self_attn_heads
self.init_std = init_std
self.post_init = post_init
self.distribution_output = distribution_output
self.loss = loss
self.num_parallel_samples = num_parallel_samples
self.unmasked_channel_indices = unmasked_channel_indices
self.norm_eps = norm_eps
super().__init__(**kwargs)
This diff is collapsed.
......@@ -6074,6 +6074,51 @@ class OwlViTVisionModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PatchTSMixerForPrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerForPretraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerForRegression(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerForTimeSeriesClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment