Commit ad908686 authored by thomwolf's avatar thomwolf
Browse files

Update example readme

parent 74c50358
...@@ -8,7 +8,7 @@ similar API between the different models. ...@@ -8,7 +8,7 @@ similar API between the different models.
| [Language Model fine-tuning](#language-model-fine-tuning) | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. | | [Language Model fine-tuning](#language-model-fine-tuning) | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. |
| [Language Generation](#language-generation) | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. | | [Language Generation](#language-generation) | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. |
| [GLUE](#glue) | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. | | [GLUE](#glue) | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. |
| [SQuAD](#squad) | Using BERT for question answering, examples with distributed training. | | [SQuAD](#squad) | Using BERT/RoBERTa/XLNet/XLM for question answering, examples with distributed training. |
| [Multiple Choice](#multiple-choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks. | [Multiple Choice](#multiple-choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks.
## Language model fine-tuning ## Language model fine-tuning
...@@ -390,3 +390,40 @@ exact_match = 86.91 ...@@ -390,3 +390,40 @@ exact_match = 86.91
This fine-tuneds model is available as a checkpoint under the reference This fine-tuneds model is available as a checkpoint under the reference
`bert-large-uncased-whole-word-masking-finetuned-squad`. `bert-large-uncased-whole-word-masking-finetuned-squad`.
#### Fine-tuning XLNet on SQuAD
This example code fine-tunes XLNet on the SQuAD dataset. See above to download the data for SQuAD .
```bash
export SQUAD_DIR=/path/to/SQUAD
python /data/home/hlu/transformers/examples/run_squad.py \
--model_type xlnet \
--model_name_or_path xlnet-large-cased \
--do_train \
--do_eval \
--do_lower_case \
--train_file /data/home/hlu/notebooks/NLP/examples/question_answering/train-v1.1.json \
--predict_file /data/home/hlu/notebooks/NLP/examples/question_answering/dev-v1.1.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./wwm_cased_finetuned_squad/ \
--per_gpu_eval_batch_size=4 \
--per_gpu_train_batch_size=4 \
--save_steps 5000
```
Training with the previously defined hyper-parameters yields the following results:
```python
{
"exact": 85.45884578997162,
"f1": 92.5974600601065,
"total": 10570,
"HasAns_exact": 85.45884578997162,
"HasAns_f1": 92.59746006010651,
"HasAns_total": 10570
}
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment