Unverified Commit ad28ca29 authored by Stas Bekman's avatar Stas Bekman Committed by GitHub
Browse files

[bloom] fix alibi device placement (#18087)

parent 8b332a6a
...@@ -93,7 +93,7 @@ def attention_mask_func(attention_scores, attention_mask, causal_mask): ...@@ -93,7 +93,7 @@ def attention_mask_func(attention_scores, attention_mask, causal_mask):
) )
def build_alibi_tensor(max_seq_len, n_head, dtype=torch.bfloat16): def build_alibi_tensor(max_seq_len, n_head, device, dtype=torch.bfloat16):
""" """
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
...@@ -129,7 +129,7 @@ def build_alibi_tensor(max_seq_len, n_head, dtype=torch.bfloat16): ...@@ -129,7 +129,7 @@ def build_alibi_tensor(max_seq_len, n_head, dtype=torch.bfloat16):
arange_tensor = torch.arange(max_seq_len).unsqueeze(0).unsqueeze(0) arange_tensor = torch.arange(max_seq_len).unsqueeze(0).unsqueeze(0)
alibi = slopes * arange_tensor.expand(n_head, -1, -1) alibi = slopes * arange_tensor.expand(n_head, -1, -1)
alibi = alibi.to(dtype) alibi = alibi.to(device=device, dtype=dtype)
return alibi return alibi
...@@ -147,7 +147,7 @@ def pre_process_alibi_for_pad(alibi, attention_mask, num_heads): ...@@ -147,7 +147,7 @@ def pre_process_alibi_for_pad(alibi, attention_mask, num_heads):
# This usually happens when the inference is done with past_key_values # This usually happens when the inference is done with past_key_values
# In this case we re-create the alibi tensor with the correct sequence length # In this case we re-create the alibi tensor with the correct sequence length
if attention_mask.shape[-1] != alibi.shape[-1]: if attention_mask.shape[-1] != alibi.shape[-1]:
alibi = build_alibi_tensor(attention_mask.shape[-1], num_heads, alibi.dtype).repeat( alibi = build_alibi_tensor(attention_mask.shape[-1], num_heads, alibi.device, alibi.dtype).repeat(
attention_mask.shape[0], 1, 1 attention_mask.shape[0], 1, 1
) )
# Get the indexes of the padding tokens # Get the indexes of the padding tokens
...@@ -156,7 +156,7 @@ def pre_process_alibi_for_pad(alibi, attention_mask, num_heads): ...@@ -156,7 +156,7 @@ def pre_process_alibi_for_pad(alibi, attention_mask, num_heads):
# Clone the embeddings - we can detach because the embeddings are not learned # Clone the embeddings - we can detach because the embeddings are not learned
# Get a refence tensor # Get a refence tensor
slice_reference_alibi = build_alibi_tensor(alibi.shape[-1], num_heads, alibi.dtype) slice_reference_alibi = build_alibi_tensor(alibi.shape[-1], num_heads, alibi.device, alibi.dtype)
# Loop over the batch where the padding is and replace the alibi tensor by the reference tensor # Loop over the batch where the padding is and replace the alibi tensor by the reference tensor
# Only where you do not have padding. Replace padding tokens by zeros # Only where you do not have padding. Replace padding tokens by zeros
...@@ -767,7 +767,7 @@ class BloomModel(BloomPreTrainedModel): ...@@ -767,7 +767,7 @@ class BloomModel(BloomPreTrainedModel):
current_sequence_length = hidden_states.shape[1] current_sequence_length = hidden_states.shape[1]
if past_key_values[0] is not None: if past_key_values[0] is not None:
current_sequence_length += past_key_values[0][0].shape[1] current_sequence_length += past_key_values[0][0].shape[1]
alibi = build_alibi_tensor(current_sequence_length, self.n_head, hidden_states.dtype) alibi = build_alibi_tensor(current_sequence_length, self.n_head, hidden_states.device, hidden_states.dtype)
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment