Unverified Commit ace74d16 authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Add Nougat (#25942)



* Add conversion script

* Add NougatImageProcessor

* Add crop margin

* More improvements

* Add docs, READMEs

* Remove print statements

* Include model_max_length

* Add NougatTokenizerFast

* Fix imports

* Improve postprocessing

* Improve image processor

* Fix image processor

* Improve normalize method

* More improvements

* More improvements

* Add processor, improve docs

* Simplify fast tokenizer

* Remove test file

* Fix docstrings

* Use NougatProcessor in conversion script

* Add is_levensthein_available

* Add tokenizer tests

* More improvements

* Use numpy instead of opencv

* Add is_cv2_available

* Fix cv2_available

* Add is_nltk_available

* Add image processor tests, improve crop_margin

* Add integration tests

* Improve integration test

* Use do_rescale instead of hacks, thanks Amy

* Remove random_padding

* Address comments

* Address more comments

* Add import

* Address more comments

* Address more comments

* Address comment

* Address comment

* Set max_model_input_sizes

* Add tests

* Add requires_backends

* Add Nougat to exotic tests

* Use to_pil_image

* Address comment regarding nltk

* Add NLTK

* Improve variable names, integration test

* Add test

* refactor, document, and test regexes

* remove named capture groups, add comments

* format

* add non-markdown fixed tokenization

* format

* correct flakyness of args parse

* add regex comments

* test functionalities for crop_image, align long axis and expected output

* add regex tests

* remove cv2 dependency

* test crop_margin equality between cv2 and python

* refactor table regexes to markdown

add newline

* change print to log, improve doc

* fix high count tables correction

* address PR comments: naming, linting, asserts

* Address comments

* Add copied from

* Update conversion script

* Update conversion script to convert both small and base versions

* Add inference example

* Add more info

* Fix style

* Add require annotators to test

* Define all keyword arguments explicitly

* Move cv2 annotator

* Add tokenizer init method

* Transfer checkpoints

* Add reference to Donut

* Address comments

* Skip test

* Remove cv2 method

* Add copied from statements

* Use cached_property

* Fix docstring

* Add file to not doctested

---------
Co-authored-by: default avatarPablo Montalvo <pablo.montalvo.leroux@gmail.com>
parent 5e09af2a
...@@ -466,13 +466,15 @@ exotic_models_job = CircleCIJob( ...@@ -466,13 +466,15 @@ exotic_models_job = CircleCIJob(
"sudo apt install tesseract-ocr", "sudo apt install tesseract-ocr",
"pip install -U --upgrade-strategy eager pytesseract", "pip install -U --upgrade-strategy eager pytesseract",
"pip install -U --upgrade-strategy eager natten", "pip install -U --upgrade-strategy eager natten",
# TODO (ydshieh): Remove this line once `https://github.com/facebookresearch/detectron2/issues/5010` is resolved "pip install -U --upgrade-strategy eager python-Levenshtein",
'pip install -U --upgrade-strategy eager "Pillow<10.0.0"', "pip install -U --upgrade-strategy eager opencv-python",
"pip install -U --upgrade-strategy eager nltk",
], ],
tests_to_run=[ tests_to_run=[
"tests/models/*layoutlmv*", "tests/models/*layoutlmv*",
"tests/models/*nat", "tests/models/*nat",
"tests/models/deta", "tests/models/deta",
"tests/models/nougat",
], ],
pytest_num_workers=1, pytest_num_workers=1,
pytest_options={"durations": 100}, pytest_options={"durations": 100},
......
...@@ -426,6 +426,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h ...@@ -426,6 +426,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/main/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
......
...@@ -402,6 +402,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt ...@@ -402,6 +402,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/main/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
......
...@@ -374,6 +374,7 @@ conda install -c huggingface transformers ...@@ -374,6 +374,7 @@ conda install -c huggingface transformers
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: चीनी भाषा समझ के लिए तंत्रिका प्रासंगिक प्रतिनिधित्व](https :/ /arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा। 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: चीनी भाषा समझ के लिए तंत्रिका प्रासंगिक प्रतिनिधित्व](https :/ /arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा।
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (फ्रॉम मेटा) साथ में पेपर [नो लैंग्वेज लेफ्ट बिहाइंड: स्केलिंग ह्यूमन-सेंटेड मशीन ट्रांसलेशन] (https://arxiv.org/abs/2207.04672) एनएलएलबी टीम द्वारा प्रकाशित। 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (फ्रॉम मेटा) साथ में पेपर [नो लैंग्वेज लेफ्ट बिहाइंड: स्केलिंग ह्यूमन-सेंटेड मशीन ट्रांसलेशन] (https://arxiv.org/abs/2207.04672) एनएलएलबी टीम द्वारा प्रकाशित।
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया
1. **[Nougat](https://huggingface.co/docs/transformers/main/model_doc/nougat)** (Meta AI से) Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. द्वाराअनुसंधान पत्र [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) के साथ जारी किया गया
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström- आधारित एल्गोरिथम आत्म-ध्यान का अनुमान लगाने के लिए ](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया। 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström- आधारित एल्गोरिथम आत्म-ध्यान का अनुमान लगाने के लिए ](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया।
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है। 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है।
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
......
...@@ -436,6 +436,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ ...@@ -436,6 +436,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204)
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta から) the NLLB team から公開された研究論文: [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta から) the NLLB team から公開された研究論文: [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[Nougat](https://huggingface.co/docs/transformers/main/model_doc/nougat)** (Meta AI から) Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. から公開された研究論文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902)
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220)
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
......
...@@ -351,6 +351,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 ...@@ -351,6 +351,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다. 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다. 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다. 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다.
1. **[Nougat](https://huggingface.co/docs/transformers/main/model_doc/nougat)** (Meta AI 에서 제공)은 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.의 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)논문과 함께 발표했습니다.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다. 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다. 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
......
...@@ -375,6 +375,7 @@ conda install -c huggingface transformers ...@@ -375,6 +375,7 @@ conda install -c huggingface transformers
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[Nougat](https://huggingface.co/docs/transformers/main/model_doc/nougat)** (来自 Meta AI) 伴随论文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) 由 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 [Open-Llama](https://github.com/s-JoL/Open-Llama) 发布. 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 [Open-Llama](https://github.com/s-JoL/Open-Llama) 发布.
......
...@@ -387,6 +387,7 @@ conda install -c huggingface transformers ...@@ -387,6 +387,7 @@ conda install -c huggingface transformers
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/main/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
......
...@@ -685,6 +685,8 @@ ...@@ -685,6 +685,8 @@
title: MatCha title: MatCha
- local: model_doc/mgp-str - local: model_doc/mgp-str
title: MGP-STR title: MGP-STR
- local: model_doc/nougat
title: Nougat
- local: model_doc/oneformer - local: model_doc/oneformer
title: OneFormer title: OneFormer
- local: model_doc/owlvit - local: model_doc/owlvit
......
...@@ -191,6 +191,7 @@ The documentation is organized into five sections: ...@@ -191,6 +191,7 @@ The documentation is organized into five sections:
1. **[Nezha](model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. 1. **[Nezha](model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB-MOE](model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. 1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. 1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). 1. **[OpenLlama](model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
...@@ -411,6 +412,7 @@ Flax), PyTorch, and/or TensorFlow. ...@@ -411,6 +412,7 @@ Flax), PyTorch, and/or TensorFlow.
| NAT | ✅ | ❌ | ❌ | | NAT | ✅ | ❌ | ❌ |
| Nezha | ✅ | ❌ | ❌ | | Nezha | ✅ | ❌ | ❌ |
| NLLB-MOE | ✅ | ❌ | ❌ | | NLLB-MOE | ✅ | ❌ | ❌ |
| Nougat | ✅ | ✅ | ✅ |
| Nyströmformer | ✅ | ❌ | ❌ | | Nyströmformer | ✅ | ❌ | ❌ |
| OneFormer | ✅ | ❌ | ❌ | | OneFormer | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ❌ | | OpenAI GPT | ✅ | ✅ | ❌ |
......
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
specific language governing permissions and limitations under the License. -->
# Nougat
## Overview
The Nougat model was proposed in [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by
Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. Nougat uses the same architecture as [Donut](donut), meaning an image Transformer
encoder and an autoregressive text Transformer decoder to translate scientific PDFs to markdown, enabling easier access to them.
The abstract from the paper is the following:
*Scientific knowledge is predominantly stored in books and scientific journals, often in the form of PDFs. However, the PDF format leads to a loss of semantic information, particularly for mathematical expressions. We propose Nougat (Neural Optical Understanding for Academic Documents), a Visual Transformer model that performs an Optical Character Recognition (OCR) task for processing scientific documents into a markup language, and demonstrate the effectiveness of our model on a new dataset of scientific documents. The proposed approach offers a promising solution to enhance the accessibility of scientific knowledge in the digital age, by bridging the gap between human-readable documents and machine-readable text. We release the models and code to accelerate future work on scientific text recognition.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/nougat_architecture.jpg"
alt="drawing" width="600"/>
<small> Nougat high-level overview. Taken from the <a href="https://arxiv.org/abs/2308.13418">original paper</a>. </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found
[here](https://github.com/facebookresearch/nougat).
Tips:
- The quickest way to get started with Nougat is by checking the [tutorial
notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Nougat), which show how to use the model
at inference time as well as fine-tuning on custom data.
- Nougat is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework. The model is identical to [Donut](donut) in terms of architecture.
## Inference
Nougat's [`VisionEncoderDecoder`] model accepts images as input and makes use of
[`~generation.GenerationMixin.generate`] to autoregressively generate text given the input image.
The [`NougatImageProcessor`] class is responsible for preprocessing the input image and
[`NougatTokenizerFast`] decodes the generated target tokens to the target string. The
[`NougatProcessor`] wraps [`NougatImageProcessor`] and [`NougatTokenizerFast`] classes
into a single instance to both extract the input features and decode the predicted token ids.
- Step-by-step PDF transcription
```py
>>> from huggingface_hub import hf_hub_download
>>> import re
>>> from PIL import Image
>>> from transformers import NougatProcessor, VisionEncoderDecoderModel
>>> from datasets import load_dataset
>>> import torch
>>> processor = NougatProcessor.from_pretrained("facebook/nougat-base")
>>> model = VisionEncoderDecoderModel.from_pretrained("facebook/nougat-base")
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> # prepare PDF image for the model
>>> filepath = hf_hub_download(repo_id="hf-internal-testing/fixtures_docvqa", filename="nougat_paper.png", repo_type="dataset")
>>> image = Image.open(filepath)
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> # generate transcription (here we only generate 30 tokens)
>>> outputs = model.generate(
... pixel_values.to(device),
... min_length=1,
... max_new_tokens=30,
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
... )
>>> sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
>>> sequence = processor.post_process_generation(sequence, fix_markdown=False)
>>> # note: we're using repr here such for the sake of printing the \n characters, feel free to just print the sequence
>>> print(repr(sequence))
'\n\n# Nougat: Neural Optical Understanding for Academic Documents\n\n Lukas Blecher\n\nCorrespondence to: lblecher@'
```
See the [model hub](https://huggingface.co/models?filter=nougat) to look for Nougat checkpoints.
## NougatImageProcessor
[[autodoc]] NougatImageProcessor
- preprocess
## NougatTokenizerFast
[[autodoc]] NougatTokenizerFast
## NougatProcessor
[[autodoc]] NougatProcessor
- __call__
- from_pretrained
- save_pretrained
- batch_decode
- decode
- post_process_generation
\ No newline at end of file
...@@ -453,6 +453,7 @@ _import_structure = { ...@@ -453,6 +453,7 @@ _import_structure = {
"models.nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], "models.nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
"models.nllb": [], "models.nllb": [],
"models.nllb_moe": ["NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig"], "models.nllb_moe": ["NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig"],
"models.nougat": ["NougatProcessor"],
"models.nystromformer": [ "models.nystromformer": [
"NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NystromformerConfig", "NystromformerConfig",
...@@ -859,6 +860,7 @@ else: ...@@ -859,6 +860,7 @@ else:
_import_structure["models.mt5"].append("MT5TokenizerFast") _import_structure["models.mt5"].append("MT5TokenizerFast")
_import_structure["models.mvp"].append("MvpTokenizerFast") _import_structure["models.mvp"].append("MvpTokenizerFast")
_import_structure["models.nllb"].append("NllbTokenizerFast") _import_structure["models.nllb"].append("NllbTokenizerFast")
_import_structure["models.nougat"].append("NougatTokenizerFast")
_import_structure["models.openai"].append("OpenAIGPTTokenizerFast") _import_structure["models.openai"].append("OpenAIGPTTokenizerFast")
_import_structure["models.pegasus"].append("PegasusTokenizerFast") _import_structure["models.pegasus"].append("PegasusTokenizerFast")
_import_structure["models.realm"].append("RealmTokenizerFast") _import_structure["models.realm"].append("RealmTokenizerFast")
...@@ -973,6 +975,7 @@ else: ...@@ -973,6 +975,7 @@ else:
_import_structure["models.mobilenet_v1"].extend(["MobileNetV1FeatureExtractor", "MobileNetV1ImageProcessor"]) _import_structure["models.mobilenet_v1"].extend(["MobileNetV1FeatureExtractor", "MobileNetV1ImageProcessor"])
_import_structure["models.mobilenet_v2"].extend(["MobileNetV2FeatureExtractor", "MobileNetV2ImageProcessor"]) _import_structure["models.mobilenet_v2"].extend(["MobileNetV2FeatureExtractor", "MobileNetV2ImageProcessor"])
_import_structure["models.mobilevit"].extend(["MobileViTFeatureExtractor", "MobileViTImageProcessor"]) _import_structure["models.mobilevit"].extend(["MobileViTFeatureExtractor", "MobileViTImageProcessor"])
_import_structure["models.nougat"].append("NougatImageProcessor")
_import_structure["models.oneformer"].extend(["OneFormerImageProcessor"]) _import_structure["models.oneformer"].extend(["OneFormerImageProcessor"])
_import_structure["models.owlvit"].extend(["OwlViTFeatureExtractor", "OwlViTImageProcessor"]) _import_structure["models.owlvit"].extend(["OwlViTFeatureExtractor", "OwlViTImageProcessor"])
_import_structure["models.perceiver"].extend(["PerceiverFeatureExtractor", "PerceiverImageProcessor"]) _import_structure["models.perceiver"].extend(["PerceiverFeatureExtractor", "PerceiverImageProcessor"])
...@@ -4566,6 +4569,7 @@ if TYPE_CHECKING: ...@@ -4566,6 +4569,7 @@ if TYPE_CHECKING:
from .models.nat import NAT_PRETRAINED_CONFIG_ARCHIVE_MAP, NatConfig from .models.nat import NAT_PRETRAINED_CONFIG_ARCHIVE_MAP, NatConfig
from .models.nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig from .models.nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
from .models.nllb_moe import NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig from .models.nllb_moe import NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig
from .models.nougat import NougatProcessor
from .models.nystromformer import NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, NystromformerConfig from .models.nystromformer import NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, NystromformerConfig
from .models.oneformer import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, OneFormerConfig, OneFormerProcessor from .models.oneformer import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, OneFormerConfig, OneFormerProcessor
from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer
...@@ -4944,6 +4948,7 @@ if TYPE_CHECKING: ...@@ -4944,6 +4948,7 @@ if TYPE_CHECKING:
from .models.mt5 import MT5TokenizerFast from .models.mt5 import MT5TokenizerFast
from .models.mvp import MvpTokenizerFast from .models.mvp import MvpTokenizerFast
from .models.nllb import NllbTokenizerFast from .models.nllb import NllbTokenizerFast
from .models.nougat import NougatTokenizerFast
from .models.openai import OpenAIGPTTokenizerFast from .models.openai import OpenAIGPTTokenizerFast
from .models.pegasus import PegasusTokenizerFast from .models.pegasus import PegasusTokenizerFast
from .models.realm import RealmTokenizerFast from .models.realm import RealmTokenizerFast
...@@ -5029,6 +5034,7 @@ if TYPE_CHECKING: ...@@ -5029,6 +5034,7 @@ if TYPE_CHECKING:
from .models.mobilenet_v1 import MobileNetV1FeatureExtractor, MobileNetV1ImageProcessor from .models.mobilenet_v1 import MobileNetV1FeatureExtractor, MobileNetV1ImageProcessor
from .models.mobilenet_v2 import MobileNetV2FeatureExtractor, MobileNetV2ImageProcessor from .models.mobilenet_v2 import MobileNetV2FeatureExtractor, MobileNetV2ImageProcessor
from .models.mobilevit import MobileViTFeatureExtractor, MobileViTImageProcessor from .models.mobilevit import MobileViTFeatureExtractor, MobileViTImageProcessor
from .models.nougat import NougatImageProcessor
from .models.oneformer import OneFormerImageProcessor from .models.oneformer import OneFormerImageProcessor
from .models.owlvit import OwlViTFeatureExtractor, OwlViTImageProcessor from .models.owlvit import OwlViTFeatureExtractor, OwlViTImageProcessor
from .models.perceiver import PerceiverFeatureExtractor, PerceiverImageProcessor from .models.perceiver import PerceiverFeatureExtractor, PerceiverImageProcessor
......
...@@ -147,6 +147,7 @@ from . import ( ...@@ -147,6 +147,7 @@ from . import (
nezha, nezha,
nllb, nllb,
nllb_moe, nllb_moe,
nougat,
nystromformer, nystromformer,
oneformer, oneformer,
openai, openai,
......
...@@ -152,6 +152,7 @@ CONFIG_MAPPING_NAMES = OrderedDict( ...@@ -152,6 +152,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("nat", "NatConfig"), ("nat", "NatConfig"),
("nezha", "NezhaConfig"), ("nezha", "NezhaConfig"),
("nllb-moe", "NllbMoeConfig"), ("nllb-moe", "NllbMoeConfig"),
("nougat", "VisionEncoderDecoderConfig"),
("nystromformer", "NystromformerConfig"), ("nystromformer", "NystromformerConfig"),
("oneformer", "OneFormerConfig"), ("oneformer", "OneFormerConfig"),
("open-llama", "OpenLlamaConfig"), ("open-llama", "OpenLlamaConfig"),
...@@ -580,6 +581,7 @@ MODEL_NAMES_MAPPING = OrderedDict( ...@@ -580,6 +581,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("nezha", "Nezha"), ("nezha", "Nezha"),
("nllb", "NLLB"), ("nllb", "NLLB"),
("nllb-moe", "NLLB-MOE"), ("nllb-moe", "NLLB-MOE"),
("nougat", "Nougat"),
("nystromformer", "Nyströmformer"), ("nystromformer", "Nyströmformer"),
("oneformer", "OneFormer"), ("oneformer", "OneFormer"),
("open-llama", "OpenLlama"), ("open-llama", "OpenLlama"),
......
...@@ -82,6 +82,7 @@ IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict( ...@@ -82,6 +82,7 @@ IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"),
("mobilevitv2", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"),
("nat", "ViTImageProcessor"), ("nat", "ViTImageProcessor"),
("nougat", "NougatImageProcessor"),
("oneformer", "OneFormerImageProcessor"), ("oneformer", "OneFormerImageProcessor"),
("owlvit", "OwlViTImageProcessor"), ("owlvit", "OwlViTImageProcessor"),
("perceiver", "PerceiverImageProcessor"), ("perceiver", "PerceiverImageProcessor"),
......
...@@ -265,8 +265,7 @@ class DonutImageProcessor(BaseImageProcessor): ...@@ -265,8 +265,7 @@ class DonutImageProcessor(BaseImageProcessor):
**kwargs, **kwargs,
) -> np.ndarray: ) -> np.ndarray:
""" """
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge Resizes `image` to `(height, width)` specified by `size` using the PIL library.
resized to keep the input aspect ratio.
Args: Args:
image (`np.ndarray`): image (`np.ndarray`):
......
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_vision_available
_import_structure = {
"processing_nougat": ["NougatProcessor"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_nougat_fast"] = ["NougatTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_nougat"] = ["NougatImageProcessor"]
if TYPE_CHECKING:
from .processing_nougat import NougatProcessor
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nougat_fast import NougatTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_nougat import NougatImageProcessor
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Nougat checkpoints using the original `nougat` library. URL:
https://github.com/facebookresearch/nougat/tree/main"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from nougat import NougatModel
from nougat.dataset.rasterize import rasterize_paper
from nougat.utils.checkpoint import get_checkpoint
from PIL import Image
from transformers import (
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
NougatImageProcessor,
NougatProcessor,
NougatTokenizerFast,
VisionEncoderDecoderModel,
)
def get_configs(model):
original_config = model.config
encoder_config = DonutSwinConfig(
image_size=original_config.input_size,
patch_size=4,
depths=original_config.encoder_layer,
num_heads=[4, 8, 16, 32],
window_size=original_config.window_size,
embed_dim=128,
)
decoder_config = MBartConfig(
is_decoder=True,
is_encoder_decoder=False,
add_cross_attention=True,
decoder_layers=original_config.decoder_layer,
max_position_embeddings=original_config.max_position_embeddings,
vocab_size=len(
model.decoder.tokenizer
), # several special tokens are added to the vocab of XLMRobertaTokenizer, see repo on the hub (added_tokens.json)
scale_embedding=True,
add_final_layer_norm=True,
tie_word_embeddings=False,
)
return encoder_config, decoder_config
# Copied from transformers.models.donut.convert_donut_to_pytorch.rename_key
def rename_key(name):
if "encoder.model" in name:
name = name.replace("encoder.model", "encoder")
if "decoder.model" in name:
name = name.replace("decoder.model", "decoder")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "embeddings.norm")
if name.startswith("encoder"):
if "layers" in name:
name = "encoder." + name
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name and "mask" not in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if name == "encoder.norm.weight":
name = "encoder.layernorm.weight"
if name == "encoder.norm.bias":
name = "encoder.layernorm.bias"
return name
# Copied from transformers.models.donut.convert_donut_to_pytorch.convert_state_dict
def convert_state_dict(orig_state_dict, model):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[3])
block_num = int(key_split[5])
dim = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight"
] = val[:dim, :]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight"
] = val[dim : dim * 2, :]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight"
] = val[-dim:, :]
else:
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias"
] = val[:dim]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"
] = val[dim : dim * 2]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias"
] = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
def convert_nougat_checkpoint(model_tag, pytorch_dump_folder_path=None, push_to_hub=False):
# load original model
checkpoint_path = get_checkpoint(None, model_tag)
original_model = NougatModel.from_pretrained(checkpoint_path)
original_model.eval()
# load HuggingFace model
encoder_config, decoder_config = get_configs(original_model)
encoder = DonutSwinModel(encoder_config)
decoder = MBartForCausalLM(decoder_config)
model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
model.eval()
state_dict = original_model.state_dict()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
# verify results on PDF
filepath = hf_hub_download(repo_id="ysharma/nougat", filename="input/nougat.pdf", repo_type="space")
images = rasterize_paper(pdf=filepath, return_pil=True)
image = Image.open(images[0])
tokenizer_file = checkpoint_path / "tokenizer.json"
tokenizer = NougatTokenizerFast(tokenizer_file=str(tokenizer_file))
tokenizer.pad_token = "<pad>"
tokenizer.bos_token = "<s>"
tokenizer.eos_token = "</s>"
tokenizer.unk_token = "<unk>"
tokenizer.model_max_length = original_model.config.max_length
size = {"height": original_model.config.input_size[0], "width": original_model.config.input_size[1]}
image_processor = NougatImageProcessor(
do_align_long_axis=original_model.config.align_long_axis,
size=size,
)
processor = NougatProcessor(image_processor=image_processor, tokenizer=tokenizer)
# verify pixel_values
pixel_values = processor(image, return_tensors="pt").pixel_values
original_pixel_values = original_model.encoder.prepare_input(image).unsqueeze(0)
assert torch.allclose(original_pixel_values, pixel_values)
# verify patch embeddings
original_patch_embed = original_model.encoder.model.patch_embed(pixel_values)
patch_embeddings, _ = model.encoder.embeddings(pixel_values)
assert torch.allclose(original_patch_embed, patch_embeddings)
# verify encoder hidden states
original_last_hidden_state = original_model.encoder(pixel_values)
last_hidden_state = model.encoder(pixel_values).last_hidden_state
assert torch.allclose(original_last_hidden_state, last_hidden_state, atol=1e-2)
# NOTE original model does not use tied weights for embeddings of decoder
original_embeddings = original_model.decoder.model.model.decoder.embed_tokens
embeddings = model.decoder.model.decoder.embed_tokens
assert torch.allclose(original_embeddings.weight, embeddings.weight, atol=1e-3)
# verify decoder hidden states
prompt = "hello world"
decoder_input_ids = original_model.decoder.tokenizer(
prompt, add_special_tokens=False, return_tensors="pt"
).input_ids
decoder_attention_mask = torch.ones_like(decoder_input_ids)
original_logits = original_model(
image_tensors=pixel_values, decoder_input_ids=decoder_input_ids, attention_mask=decoder_attention_mask
).logits
logits = model(
pixel_values,
decoder_input_ids=decoder_input_ids[:, :-1],
decoder_attention_mask=decoder_attention_mask[:, :-1],
).logits
assert torch.allclose(original_logits, logits, atol=1e-3)
# verify generation
outputs = model.generate(
pixel_values,
min_length=1,
max_length=30,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[
[tokenizer.unk_token_id],
],
return_dict_in_generate=True,
do_sample=False,
)
generated = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0]
if model_tag == "0.1.0-base":
expected_generation = "# Nougat: Neural Optical Understanding for Academic Documents\n\nLukas Blecher\n\nCorrespondence to: lblec"
elif model_tag == "0.1.0-small":
expected_generation = (
"# Nougat: Neural Optical Understanding for Academic Documents\n\nLukas Blecher\n\nCorrespondence to: lble"
)
else:
raise ValueError(f"Unexpected model tag: {model_tag}")
assert generated == expected_generation
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
tag_to_name = {"0.1.0-base": "nougat-base", "0.1.0-small": "nougat-small"}
model_name = tag_to_name[model_tag]
model.push_to_hub(f"facebook/{model_name}")
processor.push_to_hub(f"facebook/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_tag",
default="0.1.0-base",
required=False,
type=str,
choices=["0.1.0-base", "0.1.0-small"],
help="Tag of the original model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
required=False,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub.",
)
args = parser.parse_args()
convert_nougat_checkpoint(args.model_tag, args.pytorch_dump_folder_path, args.push_to_hub)
This diff is collapsed.
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Nougat.
"""
from typing import Dict, List, Optional, Union
from transformers.image_utils import ChannelDimension, PILImageResampling
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput, TruncationStrategy
from ...processing_utils import ProcessorMixin
from ...utils import PaddingStrategy, TensorType
class NougatProcessor(ProcessorMixin):
r"""
Constructs a Nougat processor which wraps a Nougat image processor and a Nougat tokenizer into a single processor.
[`NougatProcessor`] offers all the functionalities of [`NougatImageProcessor`] and [`NougatTokenizerFast`]. See the
[`~NougatProcessor.__call__`] and [`~NougatProcessor.decode`] for more information.
Args:
image_processor ([`NougatImageProcessor`]):
An instance of [`NougatImageProcessor`]. The image processor is a required input.
tokenizer ([`NougatTokenizerFast`]):
An instance of [`NougatTokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images=None,
text=None,
do_crop_margin: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_thumbnail: bool = None,
do_align_long_axis: bool = None,
do_pad: bool = None,
do_rescale: bool = None,
rescale_factor: Union[int, float] = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair_target: Optional[
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
):
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(
images,
do_crop_margin=do_crop_margin,
do_resize=do_resize,
size=size,
resample=resample,
do_thumbnail=do_thumbnail,
do_align_long_axis=do_align_long_axis,
do_pad=do_pad,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
return_tensors=return_tensors,
data_format=data_format,
input_data_format=input_data_format,
)
if text is not None:
encodings = self.tokenizer(
text,
text_pair=text_pair,
text_target=text_target,
text_pair_target=text_pair_target,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_generation(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.post_process_generation`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.post_process_generation(*args, **kwargs)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment