Unverified Commit ac5ea74e authored by IMvision12's avatar IMvision12 Committed by GitHub
Browse files

Added Type hints for LED TF (#19315)

* Update modeling_tf_led.py

* Update modeling_tf_led.py
parent 3a1a56a8
...@@ -19,6 +19,7 @@ import random ...@@ -19,6 +19,7 @@ import random
from dataclasses import dataclass from dataclasses import dataclass
from typing import List, Optional, Tuple, Union from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf import tensorflow as tf
from ...activations_tf import get_tf_activation from ...activations_tf import get_tf_activation
...@@ -26,6 +27,7 @@ from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions ...@@ -26,6 +27,7 @@ from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions
# Public API # Public API
from ...modeling_tf_utils import ( from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel, TFPreTrainedModel,
TFSharedEmbeddings, TFSharedEmbeddings,
TFWrappedEmbeddings, TFWrappedEmbeddings,
...@@ -2390,23 +2392,23 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel): ...@@ -2390,23 +2392,23 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
@replace_return_docstrings(output_type=TFLEDSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TFLEDSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids=None, decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_head_mask=None, decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[TFLEDEncoderBaseModelOutput] = None, encoder_outputs: Optional[TFLEDEncoderBaseModelOutput] = None,
global_attention_mask=None, global_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[tf.Tensor] = None,
training=False, training: bool = False,
): ):
""" """
Returns: Returns:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment