Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
a80aa03b
Unverified
Commit
a80aa03b
authored
Aug 07, 2019
by
Thomas Wolf
Committed by
GitHub
Aug 07, 2019
Browse files
Merge pull request #973 from FeiWang96/bert_config
Fix examples of loading pretrained models in docstring
parents
4fc9f9ef
6ec1ee9e
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
24 additions
and
59 deletions
+24
-59
pytorch_transformers/modeling_bert.py
pytorch_transformers/modeling_bert.py
+8
-23
pytorch_transformers/modeling_gpt2.py
pytorch_transformers/modeling_gpt2.py
+3
-6
pytorch_transformers/modeling_openai.py
pytorch_transformers/modeling_openai.py
+3
-6
pytorch_transformers/modeling_transfo_xl.py
pytorch_transformers/modeling_transfo_xl.py
+2
-4
pytorch_transformers/modeling_xlm.py
pytorch_transformers/modeling_xlm.py
+4
-10
pytorch_transformers/modeling_xlnet.py
pytorch_transformers/modeling_xlnet.py
+4
-10
No files found.
pytorch_transformers/modeling_bert.py
View file @
a80aa03b
...
@@ -643,9 +643,8 @@ class BertModel(BertPreTrainedModel):
...
@@ -643,9 +643,8 @@ class BertModel(BertPreTrainedModel):
Examples::
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel
(config
)
model = BertModel
.from_pretrained('bert-base-uncased'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...
@@ -754,10 +753,8 @@ class BertForPreTraining(BertPreTrainedModel):
...
@@ -754,10 +753,8 @@ class BertForPreTraining(BertPreTrainedModel):
Examples::
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForPreTraining.from_pretrained('bert-base-uncased')
model = BertForPreTraining(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
prediction_scores, seq_relationship_scores = outputs[:2]
prediction_scores, seq_relationship_scores = outputs[:2]
...
@@ -824,10 +821,8 @@ class BertForMaskedLM(BertPreTrainedModel):
...
@@ -824,10 +821,8 @@ class BertForMaskedLM(BertPreTrainedModel):
Examples::
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model = BertForMaskedLM(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids)
outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
loss, prediction_scores = outputs[:2]
...
@@ -891,10 +886,8 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
...
@@ -891,10 +886,8 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
Examples::
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
model = BertForNextSentencePrediction(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
seq_relationship_scores = outputs[0]
seq_relationship_scores = outputs[0]
...
@@ -951,10 +944,8 @@ class BertForSequenceClassification(BertPreTrainedModel):
...
@@ -951,10 +944,8 @@ class BertForSequenceClassification(BertPreTrainedModel):
Examples::
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
...
@@ -1057,10 +1048,8 @@ class BertForMultipleChoice(BertPreTrainedModel):
...
@@ -1057,10 +1048,8 @@ class BertForMultipleChoice(BertPreTrainedModel):
Examples::
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
model = BertForMultipleChoice(config)
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
...
@@ -1127,10 +1116,8 @@ class BertForTokenClassification(BertPreTrainedModel):
...
@@ -1127,10 +1116,8 @@ class BertForTokenClassification(BertPreTrainedModel):
Examples::
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('bert-base-uncased')
model = BertForTokenClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
...
@@ -1203,10 +1190,8 @@ class BertForQuestionAnswering(BertPreTrainedModel):
...
@@ -1203,10 +1190,8 @@ class BertForQuestionAnswering(BertPreTrainedModel):
Examples::
Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
end_positions = torch.tensor([3])
...
...
pytorch_transformers/modeling_gpt2.py
View file @
a80aa03b
...
@@ -433,9 +433,8 @@ class GPT2Model(GPT2PreTrainedModel):
...
@@ -433,9 +433,8 @@ class GPT2Model(GPT2PreTrainedModel):
Examples::
Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model
(config
)
model = GPT2Model
.from_pretrained('gpt2'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...
@@ -567,9 +566,8 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
...
@@ -567,9 +566,8 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
Examples::
Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel
(config
)
model = GPT2LMHeadModel
.from_pretrained('gpt2'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
loss, logits = outputs[:2]
...
@@ -683,9 +681,8 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
...
@@ -683,9 +681,8 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
Examples::
Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2DoubleHeadsModel
(config
)
model = GPT2DoubleHeadsModel
.from_pretrained('gpt2'
)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
...
...
pytorch_transformers/modeling_openai.py
View file @
a80aa03b
...
@@ -439,9 +439,8 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
...
@@ -439,9 +439,8 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
Examples::
Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTModel
(config
)
model = OpenAIGPTModel
.from_pretrained('openai-gpt'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...
@@ -558,9 +557,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
...
@@ -558,9 +557,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
Examples::
Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTLMHeadModel
(config
)
model = OpenAIGPTLMHeadModel
.from_pretrained('openai-gpt'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
loss, logits = outputs[:2]
...
@@ -665,9 +663,8 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
...
@@ -665,9 +663,8 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
Examples::
Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTDoubleHeadsModel
(config
)
model = OpenAIGPTDoubleHeadsModel
.from_pretrained('openai-gpt'
)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
...
...
pytorch_transformers/modeling_transfo_xl.py
View file @
a80aa03b
...
@@ -968,9 +968,8 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
...
@@ -968,9 +968,8 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
Examples::
Examples::
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel
(config
)
model = TransfoXLModel
.from_pretrained('transfo-xl-wt103'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
last_hidden_states, mems = outputs[:2]
last_hidden_states, mems = outputs[:2]
...
@@ -1284,9 +1283,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
...
@@ -1284,9 +1283,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
Examples::
Examples::
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLLMHeadModel
(config
)
model = TransfoXLLMHeadModel
.from_pretrained('transfo-xl-wt103'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
prediction_scores, mems = outputs[:2]
prediction_scores, mems = outputs[:2]
...
...
pytorch_transformers/modeling_xlm.py
View file @
a80aa03b
...
@@ -472,9 +472,8 @@ class XLMModel(XLMPreTrainedModel):
...
@@ -472,9 +472,8 @@ class XLMModel(XLMPreTrainedModel):
Examples::
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMModel
(config
)
model = XLMModel
.from_pretrained('xlm-mlm-en-2048'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...
@@ -745,9 +744,8 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
...
@@ -745,9 +744,8 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
Examples::
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMWithLMHeadModel
(config
)
model = XLMWithLMHeadModel
.from_pretrained('xlm-mlm-en-2048'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...
@@ -805,10 +803,8 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
...
@@ -805,10 +803,8 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
Examples::
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
model = XLMForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
...
@@ -885,10 +881,8 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
...
@@ -885,10 +881,8 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
Examples::
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
end_positions = torch.tensor([3])
...
...
pytorch_transformers/modeling_xlnet.py
View file @
a80aa03b
...
@@ -712,9 +712,8 @@ class XLNetModel(XLNetPreTrainedModel):
...
@@ -712,9 +712,8 @@ class XLNetModel(XLNetPreTrainedModel):
Examples::
Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetModel
(config
)
model = XLNetModel
.from_pretrained('xlnet-large-cased'
)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...
@@ -1019,9 +1018,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
...
@@ -1019,9 +1018,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
Examples::
Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetLMHeadModel
(config
)
model = XLNetLMHeadModel
.from_pretrained('xlnet-large-cased'
)
# We show how to setup inputs to predict a next token using a bi-directional context.
# We show how to setup inputs to predict a next token using a bi-directional context.
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
...
@@ -1100,10 +1098,8 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
...
@@ -1100,10 +1098,8 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
Examples::
Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
...
@@ -1200,10 +1196,8 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
...
@@ -1200,10 +1196,8 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
Examples::
Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
model = XLMForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
end_positions = torch.tensor([3])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment