Unverified Commit a80aa03b authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge pull request #973 from FeiWang96/bert_config

 Fix examples of loading pretrained models in docstring
parents 4fc9f9ef 6ec1ee9e
...@@ -643,9 +643,8 @@ class BertModel(BertPreTrainedModel): ...@@ -643,9 +643,8 @@ class BertModel(BertPreTrainedModel):
Examples:: Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel(config) model = BertModel.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -754,10 +753,8 @@ class BertForPreTraining(BertPreTrainedModel): ...@@ -754,10 +753,8 @@ class BertForPreTraining(BertPreTrainedModel):
Examples:: Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForPreTraining.from_pretrained('bert-base-uncased')
model = BertForPreTraining(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
prediction_scores, seq_relationship_scores = outputs[:2] prediction_scores, seq_relationship_scores = outputs[:2]
...@@ -824,10 +821,8 @@ class BertForMaskedLM(BertPreTrainedModel): ...@@ -824,10 +821,8 @@ class BertForMaskedLM(BertPreTrainedModel):
Examples:: Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model = BertForMaskedLM(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids) outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2] loss, prediction_scores = outputs[:2]
...@@ -891,10 +886,8 @@ class BertForNextSentencePrediction(BertPreTrainedModel): ...@@ -891,10 +886,8 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
Examples:: Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
model = BertForNextSentencePrediction(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
seq_relationship_scores = outputs[0] seq_relationship_scores = outputs[0]
...@@ -951,10 +944,8 @@ class BertForSequenceClassification(BertPreTrainedModel): ...@@ -951,10 +944,8 @@ class BertForSequenceClassification(BertPreTrainedModel):
Examples:: Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels) outputs = model(input_ids, labels=labels)
...@@ -1057,10 +1048,8 @@ class BertForMultipleChoice(BertPreTrainedModel): ...@@ -1057,10 +1048,8 @@ class BertForMultipleChoice(BertPreTrainedModel):
Examples:: Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
model = BertForMultipleChoice(config)
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
labels = torch.tensor(1).unsqueeze(0) # Batch size 1 labels = torch.tensor(1).unsqueeze(0) # Batch size 1
...@@ -1127,10 +1116,8 @@ class BertForTokenClassification(BertPreTrainedModel): ...@@ -1127,10 +1116,8 @@ class BertForTokenClassification(BertPreTrainedModel):
Examples:: Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('bert-base-uncased')
model = BertForTokenClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels) outputs = model(input_ids, labels=labels)
...@@ -1203,10 +1190,8 @@ class BertForQuestionAnswering(BertPreTrainedModel): ...@@ -1203,10 +1190,8 @@ class BertForQuestionAnswering(BertPreTrainedModel):
Examples:: Examples::
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
......
...@@ -433,9 +433,8 @@ class GPT2Model(GPT2PreTrainedModel): ...@@ -433,9 +433,8 @@ class GPT2Model(GPT2PreTrainedModel):
Examples:: Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model(config) model = GPT2Model.from_pretrained('gpt2')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -567,9 +566,8 @@ class GPT2LMHeadModel(GPT2PreTrainedModel): ...@@ -567,9 +566,8 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
Examples:: Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel(config) model = GPT2LMHeadModel.from_pretrained('gpt2')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids) outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2] loss, logits = outputs[:2]
...@@ -683,9 +681,8 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel): ...@@ -683,9 +681,8 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
Examples:: Examples::
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2DoubleHeadsModel(config) model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1 mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
......
...@@ -439,9 +439,8 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel): ...@@ -439,9 +439,8 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
Examples:: Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTModel(config) model = OpenAIGPTModel.from_pretrained('openai-gpt')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -558,9 +557,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel): ...@@ -558,9 +557,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
Examples:: Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTLMHeadModel(config) model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids) outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2] loss, logits = outputs[:2]
...@@ -665,9 +663,8 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel): ...@@ -665,9 +663,8 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
Examples:: Examples::
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTDoubleHeadsModel(config) model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1 mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
......
...@@ -968,9 +968,8 @@ class TransfoXLModel(TransfoXLPreTrainedModel): ...@@ -968,9 +968,8 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
Examples:: Examples::
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103') tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel(config) model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states, mems = outputs[:2] last_hidden_states, mems = outputs[:2]
...@@ -1284,9 +1283,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel): ...@@ -1284,9 +1283,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
Examples:: Examples::
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103') tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLLMHeadModel(config) model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
prediction_scores, mems = outputs[:2] prediction_scores, mems = outputs[:2]
......
...@@ -472,9 +472,8 @@ class XLMModel(XLMPreTrainedModel): ...@@ -472,9 +472,8 @@ class XLMModel(XLMPreTrainedModel):
Examples:: Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMModel(config) model = XLMModel.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -745,9 +744,8 @@ class XLMWithLMHeadModel(XLMPreTrainedModel): ...@@ -745,9 +744,8 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
Examples:: Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMWithLMHeadModel(config) model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -805,10 +803,8 @@ class XLMForSequenceClassification(XLMPreTrainedModel): ...@@ -805,10 +803,8 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
Examples:: Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
model = XLMForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels) outputs = model(input_ids, labels=labels)
...@@ -885,10 +881,8 @@ class XLMForQuestionAnswering(XLMPreTrainedModel): ...@@ -885,10 +881,8 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
Examples:: Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
......
...@@ -712,9 +712,8 @@ class XLNetModel(XLNetPreTrainedModel): ...@@ -712,9 +712,8 @@ class XLNetModel(XLNetPreTrainedModel):
Examples:: Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetModel(config) model = XLNetModel.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -1019,9 +1018,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel): ...@@ -1019,9 +1018,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
Examples:: Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetLMHeadModel(config) model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
# We show how to setup inputs to predict a next token using a bi-directional context. # We show how to setup inputs to predict a next token using a bi-directional context.
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
...@@ -1100,10 +1098,8 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel): ...@@ -1100,10 +1098,8 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
Examples:: Examples::
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels) outputs = model(input_ids, labels=labels)
...@@ -1200,10 +1196,8 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel): ...@@ -1200,10 +1196,8 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
Examples:: Examples::
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
model = XLMForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment