Unverified Commit a72f1c9f authored by Daniel Stancl's avatar Daniel Stancl Committed by GitHub
Browse files

Add `LongT5` model (#16792)



* Initial commit

* Make some fixes

* Make PT model full forward pass

* Drop TF & Flax implementation, fix copies etc

* Add Flax model and update some corresponding stuff

* Drop some TF things

* Update config and flax local attn

* Add encoder_attention_type to config

* .

* Update docs

* Do some cleansing

* Fix some issues -> make style; add some docs

* Fix position_bias + mask addition + Update tests

* Fix repo consistency

* Fix model consistency by removing flax operation over attn_mask

* [WIP] Add PT TGlobal LongT5

* .

* [WIP] Add flax tglobal model

* [WIP] Update flax model to use the right attention type in the encoder

* Fix flax tglobal model forward pass

* Make the use of global_relative_attention_bias

* Add test suites for TGlobal model

* Fix minor bugs, clean code

* Fix pt-flax equivalence though not convinced with correctness

* Fix LocalAttn implementation to match the original impl. + update READMEs

* Few updates

* Update: [Flax] improve large model init and loading #16148

* Add ckpt conversion script accoring to #16853 + handle torch device placement

* Minor updates to conversion script.

* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM

* gpu support + dtype fix

* Apply some suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies

* Remove caching logic for local & tglobal attention

* Apply another batch of suggestions from code review

* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx

* Fix converting script + revert config file change

* Revert "Remove caching logic for local & tglobal attention"

This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.

* Stash caching logic in Flax model

* Make side relative bias used always

* Drop caching logic in PT model

* Return side bias as it was

* Drop all remaining model parallel logic

* Remove clamp statements

* Move test files to the proper place

* Update docs with new version of hf-doc-builder

* Fix test imports

* Make some minor improvements

* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray

* Fix TGlobal for ONNX conversion + update docs

* fix _make_global_fixed_block_ids and masked neg  value

* update flax model

* style and quality

* fix imports

* remove load_tf_weights_in_longt5 from init and fix copies

* add slow test for TGlobal model

* typo fix

* Drop obsolete is_parallelizable and one warning

* Update __init__ files to fix repo-consistency

* fix pipeline test

* Fix some device placements

* [wip]: Update tests -- need to generate summaries to update expected_summary

* Fix quality

* Update LongT5 model card

* Update (slow) summarization tests

* make style

* rename checkpoitns

* finish

* fix flax tests
Co-authored-by: default avatarphungvanduy <pvduy23@gmail.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatarpatil-suraj <surajp815@gmail.com>
parent 1690094b
......@@ -284,6 +284,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/main/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/main/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/main/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
......
......@@ -265,6 +265,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/main/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/main/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/main/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
......
......@@ -289,6 +289,7 @@ conda install -c huggingface transformers
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LeViT](https://huggingface.co/docs/transformers/main/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/main/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
1. **[M-CTC-T](https://huggingface.co/docs/transformers/main/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。
......
......@@ -301,6 +301,7 @@ conda install -c huggingface transformers
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/main/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/main/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/main/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
......
......@@ -256,6 +256,8 @@
title: LeViT
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
title: LongT5
- local: model_doc/luke
title: LUKE
- local: model_doc/lxmert
......
......@@ -107,6 +107,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
......@@ -233,6 +234,7 @@ Flax), PyTorch, and/or TensorFlow.
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ |
......
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# LongT5
## Overview
The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916)
by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung and Yinfei Yang. It's an
encoder-decoder transformer pre-trained in a text-to-text denoising generative setting. LongT5 model is an extension of
T5 model, and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2)
Transient-Global attention.
The abstract from the paper is the following:
*Recent work has shown that either (1) increasing the input length or (2) increasing model size can improve the
performance of Transformer-based neural models. In this paper, we present a new model, called LongT5, with which we
explore the effects of scaling both the input length and model size at the same time. Specifically, we integrated
attention ideas from long-input transformers (ETC), and adopted pre-training strategies from summarization pre-training
(PEGASUS) into the scalable T5 architecture. The result is a new attention mechanism we call {\em Transient Global}
(TGlobal), which mimics ETC's local/global attention mechanism, but without requiring additional side-inputs. We are
able to achieve state-of-the-art results on several summarization tasks and outperform the original T5 models on
question answering tasks.*
Tips:
- [`LongT5ForConditionalGeneration`] is an extension of [`T5ForConditionalGeneration`] exchanging the traditional
encoder *self-attention* layer with efficient either *local* attention or *transient-global* (*tglobal*) attention.
- Unlike the T5 model, LongT5 does not use a task prefix. Furthermore, it uses a different pre-training objective
inspired by the pre-training of `[PegasusForConditionalGeneration]`.
- LongT5 model is designed to work efficiently and very well on long-range *sequence-to-sequence* tasks where the
input sequence exceeds commonly used 512 tokens. It is capable of handling input sequences of a length up to 16,384 tokens.
- For *Local Attention*, the sparse sliding-window local attention operation allows a given token to attend only `r`
tokens to the left and right of it (with `r=127` by default). *Local Attention* does not introduce any new parameters
to the model. The complexity of the mechanism is linear in input sequence length `l`: `O(l*r)`.
- *Transient Global Attention* is an extension of the *Local Attention*. It, furthermore, allows each input token to
interact with all other tokens in the layer. This is achieved via splitting an input sequence into blocks of a fixed
length `k` (with a default `k=16`). Then, a global token for such a block is obtained via summing and normalizing the embeddings of every token
in the block. Thanks to this, the attention allows each token to attend to both nearby tokens like in Local attention, and
also every global token like in the case of standard global attention (*transient* represents the fact the global tokens
are constructed dynamically within each attention operation). As a consequence, *TGlobal* attention introduces
a few new parameters -- global relative position biases and a layer normalization for global token's embedding.
The complexity of this mechanism is `O(l(r + l/k))`.
- An example showing how to evaluate a fine-tuned LongT5 model on the [pubmed dataset](https://huggingface.co/datasets/scientific_papers) is below.
```python
>>> import evaluate
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> dataset = load_dataset("scientific_papers", "pubmed", split="validation")
>>> model = (
... LongT5ForConditionalGeneration.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
... .to("cuda")
... .half()
... )
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
>>> def generate_answers(batch):
... inputs_dict = tokenizer(
... batch["article"], max_length=16384, padding="max_length", truncation=True, return_tensors="pt"
... )
... input_ids = inputs_dict.input_ids.to("cuda")
... attention_mask = inputs_dict.attention_mask.to("cuda")
... output_ids = model.generate(input_ids, attention_mask=attention_mask, max_length=512, num_beams=2)
... batch["predicted_abstract"] = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
... return batch
>>> result = dataset.map(generate_answer, batched=True, batch_size=2)
>>> rouge = evaluate.load("rouge")
>>> rouge.compute(predictions=result["predicted_abstract"], references=result["abstract"])
```
This model was contributed by [stancld](https://huggingface.co/stancld).
The original code can be found [here](https://github.com/google-research/longt5).
## LongT5Config
[[autodoc]] LongT5Config
## LongT5Model
[[autodoc]] LongT5Model
- forward
## LongT5ForConditionalGeneration
[[autodoc]] LongT5ForConditionalGeneration
- forward
## LongT5EncoderModel
[[autodoc]] LongT5EncoderModel
- forward
## FlaxLongT5Model
[[autodoc]] FlaxLongT5Model
- __call__
- encode
- decode
## FlaxLongT5ForConditionalGeneration
[[autodoc]] FlaxLongT5ForConditionalGeneration
- __call__
- encode
- decode
......@@ -66,6 +66,7 @@ Ready-made configurations include the following architectures:
- GPT-J
- I-BERT
- LayoutLM
- LongT5
- M2M100
- Marian
- mBART
......
......@@ -239,6 +239,7 @@ _import_structure = {
"models.led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig", "LEDTokenizer"],
"models.levit": ["LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LevitConfig"],
"models.longformer": ["LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerTokenizer"],
"models.longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config"],
"models.luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig", "LukeTokenizer"],
"models.lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig", "LxmertTokenizer"],
"models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"],
......@@ -1277,6 +1278,15 @@ else:
"LongformerSelfAttention",
]
)
_import_structure["models.longt5"].extend(
[
"LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"LongT5EncoderModel",
"LongT5ForConditionalGeneration",
"LongT5Model",
"LongT5PreTrainedModel",
]
)
_import_structure["models.luke"].extend(
[
"LUKE_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -2586,6 +2596,9 @@ else:
["FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel"]
)
_import_structure["models.gptj"].extend(["FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTJPreTrainedModel"])
_import_structure["models.longt5"].extend(
["FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel"]
)
_import_structure["models.marian"].extend(
[
"FlaxMarianModel",
......@@ -2850,6 +2863,7 @@ if TYPE_CHECKING:
from .models.led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig, LEDTokenizer
from .models.levit import LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, LevitConfig
from .models.longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerTokenizer
from .models.longt5 import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongT5Config
from .models.luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig, LukeTokenizer
from .models.lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig, LxmertTokenizer
from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
......@@ -3726,6 +3740,13 @@ if TYPE_CHECKING:
LongformerPreTrainedModel,
LongformerSelfAttention,
)
from .models.longt5 import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongT5EncoderModel,
LongT5ForConditionalGeneration,
LongT5Model,
LongT5PreTrainedModel,
)
from .models.luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
......@@ -4784,6 +4805,7 @@ if TYPE_CHECKING:
from .models.gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel
from .models.gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
from .models.gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
from .models.longt5 import FlaxLongT5ForConditionalGeneration, FlaxLongT5Model, FlaxLongT5PreTrainedModel
from .models.marian import FlaxMarianModel, FlaxMarianMTModel, FlaxMarianPreTrainedModel
from .models.mbart import (
FlaxMBartForConditionalGeneration,
......
......@@ -76,6 +76,7 @@ from . import (
led,
levit,
longformer,
longt5,
luke,
lxmert,
m2m_100,
......
......@@ -78,6 +78,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("led", "LEDConfig"),
("levit", "LevitConfig"),
("longformer", "LongformerConfig"),
("longt5", "LongT5Config"),
("luke", "LukeConfig"),
("lxmert", "LxmertConfig"),
("m2m_100", "M2M100Config"),
......@@ -193,6 +194,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
("led", "LED_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("levit", "LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("longformer", "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("longt5", "LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("luke", "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("lxmert", "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("m2m_100", "M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP"),
......@@ -310,6 +312,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("led", "LED"),
("levit", "LeViT"),
("longformer", "Longformer"),
("longt5", "LongT5"),
("luke", "LUKE"),
("lxmert", "LXMERT"),
("m2m_100", "M2M100"),
......
......@@ -77,6 +77,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("led", "LEDModel"),
("levit", "LevitModel"),
("longformer", "LongformerModel"),
("longt5", "LongT5Model"),
("luke", "LukeModel"),
("lxmert", "LxmertModel"),
("m2m_100", "M2M100Model"),
......@@ -217,6 +218,7 @@ MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
("layoutlm", "LayoutLMForMaskedLM"),
("led", "LEDForConditionalGeneration"),
("longformer", "LongformerForMaskedLM"),
("longt5", "LongT5ForConditionalGeneration"),
("m2m_100", "M2M100ForConditionalGeneration"),
("marian", "MarianMTModel"),
("megatron-bert", "MegatronBertForCausalLM"),
......@@ -423,6 +425,7 @@ MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("encoder-decoder", "EncoderDecoderModel"),
("fsmt", "FSMTForConditionalGeneration"),
("led", "LEDForConditionalGeneration"),
("longt5", "LongT5ForConditionalGeneration"),
("m2m_100", "M2M100ForConditionalGeneration"),
("marian", "MarianMTModel"),
("mbart", "MBartForConditionalGeneration"),
......
......@@ -41,6 +41,7 @@ FLAX_MODEL_MAPPING_NAMES = OrderedDict(
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
......@@ -65,6 +66,7 @@ FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
......@@ -98,6 +100,7 @@ FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
......
......@@ -137,6 +137,13 @@ else:
("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
(
"longt5",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
("luke", ("LukeTokenizer", None)),
("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_import_structure = {
"configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_longt5"] = [
"LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"LongT5EncoderModel",
"LongT5ForConditionalGeneration",
"LongT5Model",
"LongT5PreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_longt5"] = [
"FlaxLongT5ForConditionalGeneration",
"FlaxLongT5Model",
"FlaxLongT5PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_longt5 import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongT5Config, LongT5OnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longt5 import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongT5EncoderModel,
LongT5ForConditionalGeneration,
LongT5Model,
LongT5PreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longt5 import (
FlaxLongT5ForConditionalGeneration,
FlaxLongT5Model,
FlaxLongT5PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
# coding=utf-8
# Copyright 2022, The LongT5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LongT5 model configuration"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeq2SeqConfigWithPast
from ...utils import logging
logger = logging.get_logger(__name__)
LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/LongT5-Local-Base": "https://huggingface.co/google/LongT5-Local-Base/blob/main/config.json",
"google/LongT5-Local-Large": "https://huggingface.co/google/LongT5-Local-Large/blob/main/config.json",
"google/LongT5-TGlobal-Base": "https://huggingface.co/google/LongT5-TGlobal-Base/blob/main/config.json",
"google/LongT5-TGlobal-Large": "https://huggingface.co/google/LongT5-TGlobal-Large/blob/main/config.json",
}
class LongT5Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LongT5Model`] or a [`FlaxLongT5Model`]. It is
used to instantiate a LongT5 model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the LongT5
[google/LongT5-Local-Base](https://huggingface.co/google/LongT5-Local-Base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 32128):
Vocabulary size of the LongT5 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LongT5Model`].
d_model (`int`, *optional*, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
num_heads`.
d_ff (`int`, *optional*, defaults to 2048):
Size of the intermediate feed forward layer in each `LongT5Block`.
num_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
local_radius (`int`, *optional*, defaults to 127)
Number of tokens to the left/right for each token to locally self-attend in a local attention mechanism.
global_block_size (`int`, *optional*, defaults to 16)
Lenght of blocks an input sequence is divided into for a global token representation. Used only for
`encoder_attention_type = "transient-global"`.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. LongT5v1.1 uses the
`"gated-gelu"` feed forward projection. Original LongT5 implementation uses `"gated-gelu"`.
encoder_attention_type (`string`, *optional*, defaults to `"local"`):
Type of encoder attention to be used. Should be one of `"local"` or `"transient-global"`, which are
supported by LongT5 implementation.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = "longt5"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__(
self,
vocab_size=32128,
d_model=512,
d_kv=64,
d_ff=2048,
num_layers=6,
num_decoder_layers=None,
num_heads=8,
local_radius=127,
global_block_size=16,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="relu",
is_encoder_decoder=True,
encoder_attention_type="local",
use_cache=True,
pad_token_id=0,
eos_token_id=1,
**kwargs
):
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
# default = symmetry
self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers
self.num_heads = num_heads
self.local_radius = local_radius
self.global_block_size = global_block_size
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.encoder_attention_type = encoder_attention_type
self.use_cache = use_cache
act_info = self.feed_forward_proj.split("-")
self.dense_act_fn = act_info[-1]
self.is_gated_act = act_info[0] == "gated"
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'"
)
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
self.dense_act_fn = "gelu_new"
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
class LongT5OnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
@property
def default_onnx_opset(self) -> int:
return 13
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert T5/LongT5X checkpoints from the original repository to JAX/FLAX model. This script is an extension of
'src/transformers/models/t5/convert_t5x_checkpoint_to_flax.
"""
import argparse
from t5x import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeq2SeqLM
def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path):
config = AutoConfig.from_pretrained(config_name)
flax_model = FlaxAutoModelForSeq2SeqLM.from_config(config=config)
t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
encoder_attn_name = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
encoder_attn_name = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
encoder_attn_name = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global]."
)
# Encoder
for layer_index in range(config.num_layers):
layer_name = f"layers_{str(layer_index)}"
# Self-Attention
t5x_attention_key = t5x_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
t5x_attention_out = t5x_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
t5x_attention_query = t5x_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
t5x_attention_value = t5x_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
t5x_global_layer_norm = t5x_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
t5x_attention_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
t5x_mlp_wi_0 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
t5x_mlp_wi_1 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
t5x_mlp_wi = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
t5x_mlp_wo = t5x_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
t5x_mlp_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
flax_model_encoder_layer_block = flax_model.params["encoder"]["block"][str(layer_index)]["layer"]
flax_model_encoder_layer_block["0"][encoder_attn_name]["k"]["kernel"] = t5x_attention_key
flax_model_encoder_layer_block["0"][encoder_attn_name]["o"]["kernel"] = t5x_attention_out
flax_model_encoder_layer_block["0"][encoder_attn_name]["q"]["kernel"] = t5x_attention_query
flax_model_encoder_layer_block["0"][encoder_attn_name]["v"]["kernel"] = t5x_attention_value
flax_model_encoder_layer_block["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
flax_model_encoder_layer_block["0"][encoder_attn_name]["global_input_layer_norm"][
"weight"
] = t5x_global_layer_norm
if split_mlp_wi:
flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
else:
flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
flax_model_encoder_layer_block["1"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
flax_model_encoder_layer_block["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm
flax_model.params["encoder"]["block"][str(layer_index)]["layer"] = flax_model_encoder_layer_block
# Only for layer 0:
t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
flax_model.params["encoder"]["block"]["0"]["layer"]["0"][encoder_attn_name]["relative_attention_bias"][
"embedding"
] = t5x_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
t5x_encoder_global_rel_embedding = t5x_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
flax_model.params["encoder"]["block"]["0"]["layer"]["0"][encoder_attn_name]["global_relative_attention_bias"][
"embedding"
] = t5x_encoder_global_rel_embedding
# Assigning
t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"]
flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
layer_name = f"layers_{str(layer_index)}"
# Self-Attention
t5x_attention_key = t5x_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
t5x_attention_out = t5x_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
t5x_attention_query = t5x_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
t5x_attention_value = t5x_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
t5x_enc_dec_attention_module = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
t5x_enc_dec_attention_key = t5x_enc_dec_attention_module["key"]["kernel"]
t5x_enc_dec_attention_out = t5x_enc_dec_attention_module["out"]["kernel"]
t5x_enc_dec_attention_query = t5x_enc_dec_attention_module["query"]["kernel"]
t5x_enc_dec_attention_value = t5x_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
t5x_cross_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
t5x_mlp_wi_0 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
t5x_mlp_wi_1 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
t5x_mlp_wi = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
t5x_mlp_wo = t5x_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
tx5_mlp_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
flax_model_decoder_layer_block = flax_model.params["decoder"]["block"][str(layer_index)]["layer"]
flax_model_decoder_layer_block["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key
flax_model_decoder_layer_block["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out
flax_model_decoder_layer_block["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query
flax_model_decoder_layer_block["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value
flax_model_decoder_layer_block["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm
flax_model_decoder_layer_block["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key
flax_model_decoder_layer_block["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out
flax_model_decoder_layer_block["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query
flax_model_decoder_layer_block["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value
flax_model_decoder_layer_block["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm
if split_mlp_wi:
flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
else:
flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
flax_model_decoder_layer_block["2"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
flax_model_decoder_layer_block["2"]["layer_norm"]["weight"] = tx5_mlp_layer_norm
flax_model.params["decoder"]["block"][str(layer_index)]["layer"] = flax_model_decoder_layer_block
# Decoder Normalization
tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"]
flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm
# Only for layer 0:
t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"][
"embedding"
] = t5x_decoder_rel_embedding
# Token Embeddings
tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"]
flax_model.params["shared"]["embedding"] = tx5_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in t5x_model["target"]["decoder"]:
flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(flax_dump_folder_path)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint."
)
parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.")
parser.add_argument(
"--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model."
)
args = parser.parse_args()
convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
# coding=utf-8
# Copyright 2022 LongT5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax LongT5 model."""
import copy
from typing import Any, Callable, List, Optional, Tuple
import numpy as np
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_longt5 import LongT5Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/LongT5-Local-Base"
_CONFIG_FOR_DOC = "LongT5Config"
_TOKENIZER_FOR_DOC = "T5Tokenizer"
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: np.array, pad_token_id: int, decoder_start_token_id: int) -> np.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = np.zeros_like(input_ids)
shifted_input_ids[:, 1:] = input_ids[:, :-1]
shifted_input_ids[:, 0] = decoder_start_token_id
shifted_input_ids = np.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
def _pad_to_multiple(x: jnp.ndarray, block_len: int, axis: int, pad_value: int = 0) -> jnp.ndarray:
"""Pad an array so that a sequence length will be a multiple of `block_len`"""
pad_len = -x.shape[axis] % block_len
pad = [(0, 0)] * x.ndim
pad[axis] = (0, pad_len)
x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value)
return x
def _split_into_blocks(x: jnp.ndarray, block_len: int, axis: int) -> jnp.ndarray:
"""Split an input array into blocks of a given `block_len` along the given `axis`. If the dimension length
is not a multiple of `block_len`, it will be padded first with selected `pad_value`.
"""
# pad tensor to multiple of block_len
if x.shape[axis] % block_len != 0:
x = _pad_to_multiple(x, block_len, axis, pad_value=0)
num_blocks = x.shape[axis] // block_len
output_shape = x.shape[:axis] + (num_blocks, block_len) + x.shape[(axis + 1) :]
return x.reshape(output_shape)
def _concatenate_3_blocks(x: jnp.ndarray, block_axis: int, sequence_axis: int, pad_value: int = 0) -> jnp.ndarray:
"""Concatenate three consecutive blocks for each input block for local attentiont.
For more information, see: https://arxiv.org/pdf/2112.07916.pdf.
"""
num_blocks = x.shape[block_axis]
pad = [(0, 0)] * x.ndim
pad[block_axis] = (1, 1)
# [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len]
x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value)
blocks_list: List[np.array] = []
for i in range(3):
# We use indexing approach here:
# https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs
indices = [slice(0, None)] * x.ndim
indices[block_axis] = slice(i, i + num_blocks)
indices = tuple(indices)
blocks_list.append(x[indices])
return jnp.concatenate(blocks_list, axis=sequence_axis) # [batch_size, num_blocks, 3 * block_len, ...]
def _make_3block_relative_position_ids(block_len: int) -> jnp.ndarray:
"""Makes 3-blocked relative position ids for local attention."""
position_ids = jnp.arange(3 * block_len, dtype=jnp.int32)
center_position_ids = position_ids[block_len:-block_len]
relative_position_ids = position_ids[None, :] - center_position_ids[:, None] # [block_len, 3 * block_len]
return relative_position_ids
def _mask_local_attention_mask(local_attention_mask: np.ndarray, block_len: int) -> jnp.ndarray:
"""Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius."""
relative_position_ids = _make_3block_relative_position_ids(block_len)
locality_mask = jnp.abs(relative_position_ids) < block_len
locality_mask = locality_mask[None, None, :, :]
return jnp.logical_and(local_attention_mask, locality_mask)
def _get_local_attention_mask(attention_mask: np.ndarray, block_len: int) -> jnp.ndarray:
"""Prepare attention mask to be applied for a local attention."""
# [batch_size, num_blocks, block_len]
_blocked_attention_mask = _split_into_blocks(attention_mask, block_len, axis=1)
# [batch_size, num_block, 3 * block_len]
_3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_axis=1, sequence_axis=2)
_blocked_attention_mask = _blocked_attention_mask[..., None]
_3blocked_attention_mask = _3blocked_attention_mask[..., None, :]
# [batch_size, num_block, block_len, 3 * block_len]
local_attention_mask = jnp.logical_and(_blocked_attention_mask, _3blocked_attention_mask)
local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len)
# [batch_size, 1, num_block, block_len, 3 * block_len]
return local_attention_mask[:, None, ...]
def _make_global_fixed_block_ids(attention_mask: np.ndarray, global_block_size: int) -> Tuple[jnp.ndarray, np.ndarray]:
"""Obtain the "fixed block" global id corresponding to each input token.
This implementation is a simlified version of the original Flaxformr implementation adopted from:
https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py.
In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for
the whole fixed block, are assigned to the preceding block.
Padding tokens from the original sequence are represented by -1.
"""
batch_size, seq_len = attention_mask.shape[:2]
def handle_orphan_tokens(block_ids: np.ndarray) -> jnp.ndarray:
block_ends = (jnp.arange(seq_len) % global_block_size) == global_block_size - 1
true_block_ends = jnp.logical_and(block_ends, block_ids >= 0)
full_blocks = true_block_ends.sum(-1)[..., None]
block_ids = jnp.minimum(block_ids, full_blocks - 1)
return block_ids
fixed_block_mask = jnp.ones_like(attention_mask) / global_block_size
fixed_block_mask = jnp.cumsum(fixed_block_mask, axis=1) - fixed_block_mask
mask = jnp.where(attention_mask != 0.0, 1.0, -1000.0)
global_block_ids = jnp.maximum(
jnp.floor(mask + fixed_block_mask - 1.0), jnp.array(-1.0, dtype=attention_mask.dtype)
)
# set padding tokens to -1
global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1)
# [batch_size, seq_len]
global_block_ids = handle_orphan_tokens(global_block_ids)
num_globals = seq_len // global_block_size
# [batch_size, seq_len // global_block_size]
if num_globals > 0:
_sequence_block_ids_max = jnp.repeat(global_block_ids.max(axis=-1)[:, None], repeats=num_globals, axis=1)
else:
_sequence_block_ids_max = jnp.zeros((batch_size, 0), dtype=global_block_ids.dtype)
global_segment_ids = jnp.cumsum(jnp.ones((batch_size, num_globals)), axis=-1) - 1
global_segment_ids = jnp.where(global_segment_ids <= _sequence_block_ids_max, 1, 0)
return global_block_ids, global_segment_ids
def _make_side_relative_position_ids(attention_mask: np.ndarray, global_block_size: int) -> np.ndarray:
"""Create the relative position tensor for local -> global attention."""
block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size)
global_seq_len = global_segment_ids.shape[-1]
global_positions = jnp.arange(global_seq_len)
side_relative_position = global_positions - block_ids[..., None]
return side_relative_position
def _create_global_aggregates(hidden_states: np.ndarray, block_ids: np.ndarray, global_seq_len: int) -> np.ndarray:
"""Compute individual block aggregates by summing over individual blocks."""
# (batch..., seq_len, global_seq_len))
one_hot_block_ids = jax.nn.one_hot(block_ids, global_seq_len)
return jnp.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerNorm with T5->LongT5
class FlaxLongT5LayerNorm(nn.Module):
hidden_size: int
dtype: jnp.dtype = jnp.float32
eps: float = 1e-6
weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones
def setup(self):
self.weight = self.param("weight", self.weight_init, (self.hidden_size,))
def __call__(self, hidden_states):
"""
Construct a layernorm module in the LongT5 style; No bias and no subtraction of mean.
"""
# layer norm should always be calculated in float32
variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True)
hidden_states = hidden_states / jnp.sqrt(variance + self.eps)
return self.weight * hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseActDense with T5->LongT5
class FlaxLongT5DenseActDense(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32
def setup(self):
wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5)
wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5)
self.wi = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wo = nn.Dense(
self.config.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wo_init_std),
dtype=self.dtype,
)
self.dropout = nn.Dropout(self.config.dropout_rate)
self.act = ACT2FN[self.config.dense_act_fn]
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseGatedActDense with T5->LongT5
class FlaxLongT5DenseGatedActDense(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5)
wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5)
self.wi_0 = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wi_1 = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wo = nn.Dense(
self.config.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wo_init_std),
dtype=self.dtype,
)
self.dropout = nn.Dropout(self.config.dropout_rate)
self.act = ACT2FN[self.config.dense_act_fn]
def __call__(self, hidden_states, deterministic):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerFF with T5->LongT5
class FlaxLongT5LayerFF(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.is_gated_act:
self.DenseReluDense = FlaxLongT5DenseGatedActDense(self.config, dtype=self.dtype)
else:
self.DenseReluDense = FlaxLongT5DenseActDense(self.config, dtype=self.dtype)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(self, hidden_states, deterministic=True):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic)
hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic)
return hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention with T5->LongT5
class FlaxLongT5Attention(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.relative_attention_num_buckets = self.config.relative_attention_num_buckets
self.relative_attention_max_distance = self.config.relative_attention_max_distance
self.d_model = self.config.d_model
self.key_value_proj_dim = self.config.d_kv
self.n_heads = self.config.num_heads
self.dropout = self.config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5)
kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
self.q = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(q_init_std),
dtype=self.dtype,
)
self.k = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.v = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.o = nn.Dense(
self.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(o_init_std),
dtype=self.dtype,
)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0) * num_buckets
relative_position = jnp.abs(relative_position)
else:
relative_position = -jnp.clip(relative_position, a_max=0)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact)
)
relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1)
relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large)
return relative_buckets.astype("i4")
def compute_bias(self, query_length, key_length):
"""Compute binned relative position bias"""
context_position = jnp.arange(query_length, dtype="i4")[:, None]
memory_position = jnp.arange(key_length, dtype="i4")[None, :]
relative_position = memory_position - context_position
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=(not self.causal),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket)
values = values.transpose((2, 0, 1))[None, :, :, :]
return values
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = jax.lax.dynamic_update_slice(cached_key.value, key, indices)
value = jax.lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions
# that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def _create_position_bias(
self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift
):
cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache)
key_length = key_states.shape[1]
query_length = key_length if cache_is_filled else query_states.shape[1]
if self.has_relative_attention_bias:
position_bias = self.compute_bias(query_length, key_length)
elif attention_mask is not None:
position_bias = jnp.zeros_like(attention_mask)
else:
position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype)
# if key and values are already calculated, only the last query position bias should be taken
if cache_is_filled:
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
position_bias = jax.lax.dynamic_slice(
position_bias,
(0, 0, causal_attention_mask_shift, 0),
(1, self.n_heads, seq_length, max_decoder_length),
)
return position_bias
def __call__(
self,
hidden_states,
attention_mask=None,
key_value_states=None,
position_bias=None,
use_cache=False,
output_attentions=False,
deterministic=True,
init_cache=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
batch_size, seq_length = hidden_states.shape[:2]
# q, k, v projections
query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head)
key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states)
value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states)
# reshape to (batch_size, seq_length, n_heads, head_dim)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# counter-act scaling in dot_product_attention_weights function
query_states *= jnp.sqrt(query_states.shape[-1])
# for fast decoding causal attention mask should be shifted
causal_attention_mask_shift = (
self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0
)
# create causal attention_mask; attention_mask has to be defined when model is causal
if self.causal:
causal_attention_mask = make_causal_mask(attention_mask, dtype="bool")
# fast decoding for generate requires special attention_mask
if self.has_variable("cache", "cached_key"):
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_attention_mask = jax.lax.dynamic_slice(
causal_attention_mask,
(0, 0, causal_attention_mask_shift, 0),
(1, 1, seq_length, max_decoder_length),
)
# broadcast causal attention mask & attention mask to fit for merge
causal_attention_mask = jnp.broadcast_to(
causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:]
)
attention_mask = jnp.broadcast_to(
jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape
)
attention_mask = combine_masks(attention_mask, causal_attention_mask)
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# replace masked positions with -10_000
if attention_mask is not None:
attention_mask = jax.lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, -1e4).astype(self.dtype),
)
if position_bias is None:
# compute position bias (only for first layer)
position_bias = self._create_position_bias(
key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift
)
if attention_mask is not None:
position_bias = position_bias + attention_mask
# create dropout rng
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# Softmax(QK^T)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=position_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
)
# multiply with value states
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
# bring back to (batch_size, seq_length, d_model)
attn_output = self._merge_heads(attn_output)
# apply output matrix
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class FlaxLongT5LocalAttention(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.relative_attention_num_buckets = self.config.relative_attention_num_buckets
self.relative_attention_max_distance = self.config.relative_attention_max_distance
self.d_model = self.config.d_model
self.key_value_proj_dim = self.config.d_kv
self.n_heads = self.config.num_heads
self.local_radius = self.config.local_radius
self.block_len = self.local_radius + 1
self.dropout = self.config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5)
kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
self.q = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(q_init_std),
dtype=self.dtype,
)
self.k = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.v = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.o = nn.Dense(
self.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(o_init_std),
dtype=self.dtype,
)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
)
@staticmethod
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0) * num_buckets
relative_position = jnp.abs(relative_position)
else:
relative_position = -jnp.clip(relative_position, a_max=0)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact)
)
relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1)
relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large)
return relative_buckets.astype("i4")
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = jnp.arange(3 * block_length, dtype="i4")
context_position = memory_position[block_length:-block_length]
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket)
values = values.transpose((2, 0, 1))[None, None, :, :, :]
return values
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim)
def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if self.has_relative_attention_bias:
position_bias = self.compute_bias(block_len)
elif attention_mask is not None:
position_bias = jnp.zeros_like(attention_mask)
else:
position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype)
return position_bias
def __call__(
self,
hidden_states,
attention_mask=None,
key_value_states=None,
position_bias=None,
output_attentions=False,
deterministic=True,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
batch_size, seq_length = hidden_states.shape[:2]
# q, k, v projections
query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head)
key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states)
value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states)
# reshape to (batch_size, seq_length, n_heads, head_dim)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim)
query_states = _split_into_blocks(query_states, self.block_len, axis=1)
key_states = _split_into_blocks(key_states, self.block_len, axis=1)
value_states = _split_into_blocks(value_states, self.block_len, axis=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2)
value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2)
# counter-act scaling in dot_product_attention_weights function
query_states *= jnp.sqrt(query_states.shape[-1])
if attention_mask is not None:
attention_mask = _get_local_attention_mask(attention_mask, self.block_len)
# replace masked positions with -10_000
attention_mask = jax.lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, -1e10).astype(self.dtype),
)
if position_bias is None:
# compute position bias (only for first layer)
position_bias = self._create_position_bias(self.block_len, attention_mask)
if attention_mask is not None:
position_bias = position_bias + attention_mask.swapaxes(1, 2)
# create dropout rng
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# Softmax(QK^T)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=position_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
)
# multiply with value states
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
# bring back to (batch_size, seq_length, d_model)
attn_output = self._merge_heads(attn_output)
attn_output = attn_output[:, :seq_length, :]
# apply output matrix
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class FlaxLongT5TransientGlobalAttention(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.relative_attention_num_buckets = self.config.relative_attention_num_buckets
self.relative_attention_max_distance = self.config.relative_attention_max_distance
self.d_model = self.config.d_model
self.key_value_proj_dim = self.config.d_kv
self.n_heads = self.config.num_heads
self.local_radius = self.config.local_radius
self.block_len = self.local_radius + 1
self.global_block_size = self.config.global_block_size
self.dropout = self.config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5)
kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
self.q = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(q_init_std),
dtype=self.dtype,
)
self.k = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.v = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.o = nn.Dense(
self.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(o_init_std),
dtype=self.dtype,
)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
)
# Relativen attention bias & Layer norm for global attention
if self.has_relative_attention_bias:
self.global_relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
)
self.global_input_layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
@staticmethod
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0) * num_buckets
relative_position = jnp.abs(relative_position)
else:
relative_position = -jnp.clip(relative_position, a_max=0)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact)
)
relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1)
relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large)
return relative_buckets.astype("i4")
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = jnp.arange(3 * block_length, dtype="i4")
context_position = memory_position[block_length:-block_length]
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket)
values = values.transpose((2, 0, 1))[None, None, :, :, :]
return values
def compute_side_bias(self, attention_mask: np.ndarray, global_segment_ids: np.ndarray) -> np.ndarray:
# (batch_size, 1, 1, seq_len, global_seq_len)
side_attention_mask = jnp.equal(attention_mask[..., None], global_segment_ids[:, None, :])[:, None, ...]
attention_side_bias = jax.lax.select(
side_attention_mask > 0,
jnp.full(side_attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(side_attention_mask.shape, -1e10).astype(self.dtype),
)
# (batch_size, seq_len, global_seq_len)
side_relative_position = _make_side_relative_position_ids(attention_mask, self.global_block_size)
side_relative_position_bucket = self._relative_position_bucket(
side_relative_position,
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (batch_size, seq_len, global_seq_len, num_heads)
side_bias = self.global_relative_attention_bias(side_relative_position_bucket)
# (batch_size, 1, num_heads, seq_len, global_seq_len)
side_bias = jnp.transpose(side_bias, (0, 3, 1, 2))
# (batch_size, num_heads, seq_len, global_seq_len)
attention_side_bias = attention_side_bias + side_bias
return attention_side_bias
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim)
def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if self.has_relative_attention_bias:
position_bias = self.compute_bias(block_len)
elif attention_mask is not None:
position_bias = jnp.zeros_like(attention_mask)
else:
position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype)
return position_bias
def __call__(
self,
hidden_states,
attention_mask=None,
key_value_states=None,
position_bias=None,
output_attentions=False,
deterministic=True,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
batch_size, seq_length = hidden_states.shape[:2]
# Prepare components for transient-global attention
# Obtain block_ids and global_segment_ids
# global_seq_len := seq_len // self.global_block_size
# shapes: (batch_size, seq_len) & (batch_size, global_seq_len)
block_ids, global_segment_ids = _make_global_fixed_block_ids(
attention_mask if attention_mask is not None else jnp.ones((batch_size, seq_length)),
self.global_block_size,
)
# Create global inputs
_global_seq_len = global_segment_ids.shape[-1]
global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len)
global_inputs = self.global_input_layer_norm(global_inputs)
# q, k, v projections
query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head)
key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states)
value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states)
# reshape to (batch_size, seq_length, n_heads, head_dim)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# Get global/side key/value_states
side_key_states = self.k(global_inputs)
side_value_states = self.v(global_inputs)
# reshape to (batch_size, global_seq_len, n_heads, head_dim)
side_key_states = self._split_heads(side_key_states)
side_value_states = self._split_heads(side_value_states)
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim)
query_states = _split_into_blocks(query_states, self.block_len, axis=1)
key_states = _split_into_blocks(key_states, self.block_len, axis=1)
value_states = _split_into_blocks(value_states, self.block_len, axis=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2)
value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2)
# Tile side inputs across local key/value blocks
# New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head)
reps = [1] * (side_key_states.ndim + 1)
reps[1] = key_states.shape[1]
side_key_states = jnp.tile(side_key_states[:, None, ...], reps)
side_value_states = jnp.tile(side_value_states[:, None, ...], reps)
# Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones
# New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head)
key_states = jnp.concatenate((key_states, side_key_states), axis=2)
value_states = jnp.concatenate((value_states, side_value_states), axis=2)
# counter-act scaling in dot_product_attention_weights function
query_states *= jnp.sqrt(query_states.shape[-1])
if attention_mask is not None:
local_attention_mask = _get_local_attention_mask(attention_mask, self.block_len)
local_attention_mask = jax.lax.select(
local_attention_mask > 0,
jnp.full(local_attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(local_attention_mask.shape, -1e10).astype(self.dtype),
)
else:
local_attention_mask = None
if position_bias is None:
# compute position bias (only for first layer)
position_bias = self._create_position_bias(self.block_len, attention_mask)
if local_attention_mask is not None:
position_bias = position_bias + local_attention_mask.swapaxes(1, 2)
# Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len)
if attention_mask is None:
attention_mask = jnp.ones((batch_size, seq_length))
side_position_bias = self.compute_side_bias(attention_mask, global_segment_ids)
side_position_bias = _split_into_blocks(side_position_bias, self.block_len, axis=-2)
side_position_bias = jnp.swapaxes(side_position_bias, 1, 2)
position_bias = jnp.concatenate((position_bias, side_position_bias), axis=-1)
# create dropout rng
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# Softmax(QK^T)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=position_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
)
# multiply with value states
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
# bring back to (batch_size, seq_length, d_model)
attn_output = self._merge_heads(attn_output)
attn_output = attn_output[:, :seq_length, :]
# apply output matrix
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class FlaxLongT5LayerLocalSelfAttention(nn.Module):
"""Local self attention used in encoder"""
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.LocalSelfAttention = FlaxLongT5LocalAttention(
self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype
)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
**kwargs: Any, # to accept init_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.LocalSelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class FlaxLongT5LayerTransientGlobalSelfAttention(nn.Module):
"""Transient-Global self attention used in encoder"""
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.TransientGlobalSelfAttention = FlaxLongT5TransientGlobalAttention(
self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype
)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
**kwargs: Any, # to accept init_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.TransientGlobalSelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerSelfAttention with T5->LongT5
class FlaxLongT5LayerSelfAttention(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.SelfAttention = FlaxLongT5Attention(
self.config,
has_relative_attention_bias=self.has_relative_attention_bias,
causal=self.config.causal,
dtype=self.dtype,
)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
init_cache=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCrossAttention with T5->LongT5
class FlaxLongT5LayerCrossAttention(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.EncDecAttention = FlaxLongT5Attention(
self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype
)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
attention_mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class FlaxLongT5Block(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.causal = self.config.causal
if self.causal:
attention_layer = FlaxLongT5LayerSelfAttention
elif self.config.encoder_attention_type == "local":
attention_layer = FlaxLongT5LayerLocalSelfAttention
elif self.config.encoder_attention_type == "transient-global":
attention_layer = FlaxLongT5LayerTransientGlobalSelfAttention
else:
raise ValueError(
"For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
f"but got {self.config.encoder_attention_type}."
)
self.layer = (
attention_layer(
self.config,
has_relative_attention_bias=self.has_relative_attention_bias,
name=str(0),
dtype=self.dtype,
),
)
feed_forward_index = 1
if self.causal:
self.layer += (FlaxLongT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),)
feed_forward_index += 1
self.layer += (FlaxLongT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Block.__call__ with T5->LongT5
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
output_attentions=False,
return_dict=True,
deterministic=True,
init_cache=False,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = self_attention_outputs[0]
attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights
do_cross_attention = self.causal and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = cross_attention_outputs[0]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[1:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
outputs = outputs + attention_outputs
# returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
return outputs
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCollection with T5->LongT5
class FlaxLongT5LayerCollection(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layer = FlaxLongT5Block(
self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype
)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
output_attentions=False,
return_dict=True,
deterministic=True,
init_cache=False,
):
return self.layer(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5BlockCollection with T5->LongT5
class FlaxLongT5BlockCollection(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.causal = self.config.causal
self.blocks = [
FlaxLongT5LayerCollection(self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i))
for i in range(self.config.num_layers)
]
def __call__(
self,
hidden_states=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions: bool = False,
output_hidden_states: bool = False,
deterministic: bool = True,
init_cache: bool = False,
):
# Prepare head mask if needed
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.causal) else None
position_bias = None
encoder_decoder_position_bias = None
for i, layer_module in enumerate(self.blocks):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = layer_outputs[0]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[1]
if self.causal and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
if self.causal:
all_cross_attentions = all_cross_attentions + (layer_outputs[4],)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Stack with T5->LongT5
class FlaxLongT5Stack(nn.Module):
config: LongT5Config
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.causal = self.config.causal
self.block = FlaxLongT5BlockCollection(self.config, dtype=self.dtype)
self.final_layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
init_cache: bool = False,
):
hidden_states = self.embed_tokens(input_ids)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
outputs = self.block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = outputs[0]
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
# Add last layer
all_hidden_states = None
if output_hidden_states:
all_hidden_states = outputs.hidden_states
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
if output_hidden_states:
return (
hidden_states,
all_hidden_states,
) + outputs[2:]
return (hidden_states,) + outputs[1:]
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
LONGT5_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
LONGT5_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For training, `decoder_input_ids` should be provided.
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
LONGT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5
Training](./longt5#training).
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
encoder_outputs (`tuple(tuple(jnp.ndarray)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(jnp.ndarray))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxLongT5PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongT5Config
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: LongT5Config,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = jnp.ones_like(input_ids)
decoder_attention_mask = jnp.ones_like(input_ids)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: jnp.ndarray = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if decoder_input_ids is None:
raise ValueError(
"Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed"
" here."
)
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# prepare decoder inputs
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(LONGT5_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=LongT5Config)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/LongT5-Local-Base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=LongT5Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/LongT5-Local-Base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxLongT5Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
LONGT5_START_DOCSTRING = r"""
The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long
Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo
Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising
generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different
efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention.
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`LongT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting raw hidden-stateswithout any specific head on top.",
LONGT5_START_DOCSTRING,
)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Module with T5->LongT5
class FlaxLongT5Module(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0),
)
encoder_config = copy.deepcopy(self.config)
encoder_config.causal = False
self.encoder = FlaxLongT5Stack(encoder_config, embed_tokens=self.shared, dtype=self.dtype)
decoder_config = copy.deepcopy(self.config)
decoder_config.causal = True
decoder_config.num_layers = self.config.num_decoder_layers
self.decoder = FlaxLongT5Stack(decoder_config, embed_tokens=self.shared, dtype=self.dtype)
def __call__(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
deterministic: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Model with T5->LongT5
class FlaxLongT5Model(FlaxLongT5PreTrainedModel):
module_class = FlaxLongT5Module
append_call_sample_docstring(
FlaxLongT5Model, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC
)
FLAX_LONGT5_MODEL_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, FlaxLongT5Model
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5Model.from_pretrained("google/LongT5-Local-Base")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="np"
... ).input_ids
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxLongT5Model, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_MODEL_DOCSTRING)
append_replace_return_docstrings(FlaxLongT5Model, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5ForConditionalGenerationModule with T5->LongT5
class FlaxLongT5ForConditionalGenerationModule(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def setup(self):
self.model_dim = self.config.d_model
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor),
)
encoder_config = copy.deepcopy(self.config)
encoder_config.causal = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = FlaxLongT5Stack(encoder_config, self.shared, dtype=self.dtype)
decoder_config = copy.deepcopy(self.config)
decoder_config.causal = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = self.config.num_decoder_layers
self.decoder = FlaxLongT5Stack(decoder_config, self.shared, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.initializer_factor),
dtype=self.dtype,
)
def __call__(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
deterministic: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
if self.config.tie_word_embeddings:
shared_embedding = self.shared.variables["params"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
else:
lm_logits = self.lm_head(sequence_output)
if not return_dict:
return (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class FlaxLongT5ForConditionalGeneration(FlaxLongT5PreTrainedModel):
module_class = FlaxLongT5ForConditionalGenerationModule
@add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=LongT5Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/LongT5-Local-Base")
>>> text = "summarize: My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxLongT5Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
decoder_outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.config.d_model**-0.5)
if self.config.tie_word_embeddings:
shared_embedding = module.shared.variables["params"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
else:
lm_logits = module.lm_head(sequence_output)
return lm_logits, decoder_outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jnp.DeviceArray] = None,
decoder_attention_mask: Optional[jnp.DeviceArray] = None,
encoder_outputs=None,
**kwargs
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
extended_attention_mask = jax.lax.dynamic_update_slice(
extended_attention_mask, decoder_attention_mask, (0, 0)
)
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
return model_kwargs
FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/LongT5-Local-Base")
>>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
"""
overwrite_call_docstring(
FlaxLongT5ForConditionalGeneration, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING
)
append_replace_return_docstrings(
FlaxLongT5ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
# coding=utf-8
# Copyright 2022 Google LLC., LongT5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LongT5 model."""
import copy
import math
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.utils.checkpoint import checkpoint
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
replace_return_docstrings,
)
from .configuration_longt5 import LongT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LongT5Config"
_TOKENIZER_FOR_DOC = "T5Tokenizer"
_CHECKPOINT_FOR_DOC = "google/LongT5-Local-Base"
# TODO: Update before the merge
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/LongT5-Local-Base",
"google/LongT5-Local-Large",
"google/LongT5-TGlobal-Base",
"google/LongT5-TGlobal-Large",
]
def _pad_to_multiple(x: torch.Tensor, block_len: int, dim: int, pad_value: int = 0) -> torch.Tensor:
"""Pad a tensor so that a sequence length will be a multiple of `block_len`"""
pad_len = -x.shape[dim] % block_len
# Handle cases when an empty input sequence is given
if not all(x.shape):
new_shape = list(x.shape)
new_shape[dim] += pad_len
return torch.zeros(new_shape, dtype=x.dtype)
pad = [(0, 0)] * x.ndim
pad[dim] = (0, pad_len)
pad = sum(pad[::-1], ())
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
return x
def _split_into_blocks(x: torch.Tensor, block_len: int, dim: int) -> torch.Tensor:
"""Split an input tensor into blocks of a given `block_len` along the given `dim`. If the dimension length
is not a multiple of `block_len`, it will be padded first with selected `pad_value`.
"""
# pad tensor to multiple of block_len
if x.shape[dim] % block_len != 0:
x = _pad_to_multiple(x, block_len, dim, pad_value=0)
num_blocks = x.shape[dim] // block_len
output_shape = x.shape[:dim] + (num_blocks, block_len) + x.shape[(dim + 1) :]
# If 0 is in output_shape, we cannot apply reshape because of incompatibility with ONNX conversion
if 0 in output_shape:
return torch.empty(output_shape, dtype=x.dtype, device=x.device)
return x.reshape(output_shape)
def _concatenate_3_blocks(x: torch.Tensor, block_dim: int, sequence_dim: int, pad_value: int = 0) -> torch.Tensor:
"""Concatenate three consecutive blocks for each input block for local attentiont.
For more information, see: https://arxiv.org/pdf/2112.07916.pdf.
"""
num_blocks = x.shape[block_dim]
pad = [(0, 0)] * x.ndim
pad[block_dim] = (1, 1)
pad = sum(pad[::-1], ())
# [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len]
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
blocks_list: List[torch.Tensor] = []
for i in range(3):
# We use indexing approach here:
# https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs
indices = [slice(0, None)] * x.ndim
indices[block_dim] = slice(i, i + num_blocks)
indices = tuple(indices)
blocks_list.append(x[indices])
# [batch_size, num_blocks, 3 * block_len, ...]
return torch.cat(blocks_list, dim=sequence_dim)
def _make_3block_relative_position_ids(block_len: int) -> torch.Tensor:
"""Makes 3-blocked relative position ids for local attention."""
position_ids = torch.arange(3 * block_len, dtype=torch.int32)
center_position_ids = position_ids[block_len:-block_len]
# [block_len, 3 * block_len]
relative_position_ids = position_ids.unsqueeze(0) - center_position_ids.unsqueeze(1)
return relative_position_ids
def _mask_local_attention_mask(local_attention_mask: torch.Tensor, block_len: int) -> torch.Tensor:
"""Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius."""
relative_position_ids = _make_3block_relative_position_ids(block_len)
locality_mask = torch.abs(relative_position_ids) < block_len
locality_mask = locality_mask[None, None, :, :]
locality_mask = locality_mask.to(local_attention_mask.device)
return torch.logical_and(local_attention_mask, locality_mask)
def _get_local_attention_mask(attention_mask: torch.Tensor, block_len: int, device: torch.device) -> torch.Tensor:
"""Prepare attention mask to be applied for a local attention."""
# [batch_size, num_blocks, block_len]
_blocked_attention_mask = _split_into_blocks(attention_mask, block_len, dim=1)
# [batch_size, num_block, 3 * block_len]
_3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_dim=1, sequence_dim=2)
_blocked_attention_mask = _blocked_attention_mask.unsqueeze(-1)
_3blocked_attention_mask = _3blocked_attention_mask.unsqueeze(-2)
# [batch_size, num_block, block_len, 3 * block_len]
local_attention_mask = torch.logical_and(_blocked_attention_mask, _3blocked_attention_mask)
local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len)
# [batch_size, 1, num_block, block_len, 3 * block_len]
return local_attention_mask.unsqueeze(1).to(device)
def _make_global_fixed_block_ids(
attention_mask: torch.Tensor, global_block_size: int
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Obtain the "fixed block" global id corresponding to each input token.
This implementation is a simlified version of the original Flaxformr implementation adopted from:
https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py.
In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for
the whole fixed block, are assigned to the preceding block.
Padding tokens from the original sequence are represented by -1.
"""
batch_size, seq_len = attention_mask.shape[:2]
def handle_orphan_tokens(block_ids: torch.Tensor) -> torch.Tensor:
block_ends = (torch.arange(seq_len) % global_block_size) == global_block_size - 1
block_ends = block_ends.to(block_ids.device)
true_block_ends = torch.logical_and(block_ends, block_ids >= 0)
full_blocks = true_block_ends.sum(-1).unsqueeze(-1).type(block_ids.dtype) - 1
block_ids = torch.where(block_ids < full_blocks, block_ids, full_blocks)
return block_ids
fixed_block_mask = torch.ones_like(attention_mask, device=attention_mask.device) / global_block_size
fixed_block_mask = torch.cumsum(fixed_block_mask, axis=1) - fixed_block_mask
mask = torch.where(attention_mask != 0.0, 1.0, -1000.0).type(attention_mask.dtype)
global_block_ids = torch.floor(mask + fixed_block_mask - 1.0).type(attention_mask.dtype)
_global_block_ids_lower_bound = torch.tensor(-1.0, dtype=global_block_ids.dtype, device=global_block_ids.device)
global_block_ids = torch.where(
global_block_ids > _global_block_ids_lower_bound, global_block_ids, _global_block_ids_lower_bound
)
# set padding tokens to -1
global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1)
# [batch_size, seq_len]
global_block_ids = handle_orphan_tokens(global_block_ids)
num_globals = seq_len // global_block_size
# [batch_size, seq_len // global_block_size]
if num_globals > 0:
_sequence_block_ids_max = torch.max(global_block_ids, dim=-1).values.repeat(num_globals, 1).transpose(0, 1)
else:
_sequence_block_ids_max = torch.zeros(
batch_size, 0, dtype=global_block_ids.dtype, device=global_block_ids.device
)
global_segment_ids = torch.cumsum(torch.ones(batch_size, num_globals), dim=-1) - 1
global_segment_ids = global_segment_ids.to(attention_mask.device)
global_segment_ids = torch.where(global_segment_ids <= _sequence_block_ids_max, 1, 0)
return global_block_ids.type(torch.int), global_segment_ids.type(torch.int)
def _make_side_relative_position_ids(attention_mask: torch.Tensor, global_block_size: int) -> torch.Tensor:
"""Create the relative position tensor for local -> global attention."""
block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size)
global_seq_len = global_segment_ids.shape[-1]
global_positions = torch.arange(global_seq_len, device=block_ids.device)
side_relative_position = global_positions - block_ids[..., None]
return side_relative_position.type(torch.int64)
def _create_global_aggregates(
hidden_states: torch.Tensor, block_ids: torch.Tensor, global_seq_len: int
) -> torch.Tensor:
"""Compute individual block aggregates by summing over individual blocks."""
# (batch..., seq_len, global_seq_len))
block_ids = block_ids.where(
block_ids >= 0, torch.tensor(global_seq_len, dtype=block_ids.dtype, device=block_ids.device)
)
one_hot_block_ids = nn.functional.one_hot(block_ids.type(torch.int64), global_seq_len + 1)[:, :, :-1]
return torch.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids.type(hidden_states.dtype))
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->LongT5
class LongT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# LongT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
LongT5LayerNorm = FusedRMSNorm # noqa
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of LongT5LayerNorm")
except ImportError:
# using the normal LongT5LayerNorm
pass
except Exception:
logger.warning("discovered apex but it failed to load, falling back to LongT5LayerNorm")
pass
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->LongT5
class LongT5DenseActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->LongT5
class LongT5DenseGatedActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->LongT5
class LongT5LayerFF(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = LongT5DenseGatedActDense(config)
else:
self.DenseReluDense = LongT5DenseActDense(config)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->LongT5
class LongT5Attention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
assert (
len(past_key_value) == 2
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
def unshape(states):
"""reshape"""
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
# get key/value states
key_states = project(
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
)
value_states = project(
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
)
# compute scores
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if position_bias is None:
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if mask is not None:
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
scores += position_bias
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
scores
) # (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
) # (batch_size, n_heads, seq_length, key_length)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
attn_output = self.o(attn_output)
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5LocalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = torch.arange(
3 * block_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Compute scores
scores = torch.einsum(
"...qhd,...khd->...hqk", query_states, key_states
) # (batch_size, num_block, n_heads, block_len, 3 * block_len)
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if mask is not None:
# Replace masked positions with -1e10 (according to the original implementation)
mask = torch.where(mask > 0, 0.0, -1e10)
# We need to adjust position bias shape to be sum with mask
position_bias = position_bias + mask.transpose(1, 2)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
present_key_value_state = None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5TransientGlobalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.global_block_size = config.global_block_size
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
# Relativen attention bias & Layer norm for global attention
if self.has_relative_attention_bias:
self.global_relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.global_input_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = torch.arange(
3 * block_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def compute_side_bias(self, mask: torch.Tensor, global_segment_ids: torch.Tensor) -> torch.Tensor:
# (batch_size, 1, seq_len, global_seq_len)
side_attention_mask = torch.eq(mask[..., None], global_segment_ids[:, None, :])[:, None, ...]
attention_side_bias = torch.where(side_attention_mask > 0, 0.0, -1e10)
# (batch_size, seq_len, global_seq_len)
side_relative_position = _make_side_relative_position_ids(mask, self.global_block_size)
side_relative_position_bucket = self._relative_position_bucket(
side_relative_position,
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (batch_size, seq_len, global_seq_len, num_heads)
side_bias = self.global_relative_attention_bias(side_relative_position_bucket)
# (batch_size, num_heads, seq_len, global_seq_len)
side_bias = side_bias.permute([0, 3, 1, 2])
# (batch_size, num_heads, seq_len, global_seq_len)
attention_side_bias = attention_side_bias + side_bias
return attention_side_bias
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# Prepare components for transient-global attention
# Obtain block_ids and global_segment_ids
# global_seq_len := seq_len // self.global_block_size
# shapes: (batch_size, seq_len) & (batch_size, global_seq_len)
block_ids, global_segment_ids = _make_global_fixed_block_ids(
mask if mask is not None else torch.ones(hidden_states.shape[:-1]),
self.global_block_size,
)
# Create global inputs
_global_seq_len = global_segment_ids.shape[-1]
global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len)
global_inputs = self.global_input_layer_norm(global_inputs)
# get query states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Get global/side key/value states shape: (batch_size, global_seq_len, n_heads, dim_per_head)
side_key_states = shape(self.k(global_inputs))
side_value_states = shape(self.v(global_inputs))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Tile side inputs across local key/value blocks
# New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head)
reps = [1] * (side_key_states.ndim + 1)
reps[1] = key_states.shape[1]
side_key_states = side_key_states.unsqueeze(1).repeat(reps)
side_value_states = side_value_states.unsqueeze(1).repeat(reps)
# Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones
# New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head)
key_states = torch.cat([key_states, side_key_states], dim=2)
value_states = torch.cat([value_states, side_value_states], dim=2)
# Compute scores -> (batch_size, num_block, n_heads, block_len, 3 * block_len + global_seq_len)
scores = torch.einsum("...qhd,...khd->...hqk", query_states, key_states)
if mask is not None:
# We need to adjust position bias shape to be sum with mask
local_attention_mask = _get_local_attention_mask(mask, self.block_len, hidden_states.device)
# Replace masked positions with -10_000 (according to the original implementation)
local_attention_mask = torch.where(local_attention_mask > 0, 0.0, -1e10)
else:
local_attention_mask = None
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len),
device=scores.device,
dtype=scores.dtype,
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if local_attention_mask is not None:
# (batch_size, 1, n_heads, block_len, 3 * block_len)
position_bias = position_bias + local_attention_mask.transpose(1, 2)
position_bias = position_bias.type(scores.dtype)
# Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len)
if mask is None:
mask = torch.ones(batch_size, seq_length)
# (batch_size, num_heads, seq_len, global_seq_len)
side_position_bias = self.compute_side_bias(mask, global_segment_ids)
# (batch_size, num_blocks, num_heads, block_len, global_seq_len)
side_position_bias = _split_into_blocks(side_position_bias, self.block_len, dim=-2).transpose(1, 2)
side_position_bias = side_position_bias.type(scores.dtype).to(scores.device)
# (batch_size, num_blocks, num_heads, block_len, 3 * block_len + global_seq_len)
position_bias = torch.cat([position_bias, side_position_bias], dim=-1)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len + global_seq_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
present_key_value_state = None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->LongT5
class LongT5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.SelfAttention = LongT5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerLocalSelfAttention(nn.Module):
"""Local self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.LocalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerTransientGlobalSelfAttention(nn.Module):
"""Transient-Global self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.TransientGlobalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->LongT5
class LongT5LayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
if config.is_decoder:
attention_layer = LongT5LayerSelfAttention
elif config.encoder_attention_type == "local":
attention_layer = LongT5LayerLocalSelfAttention
elif config.encoder_attention_type == "transient-global":
attention_layer = LongT5LayerTransientGlobalSelfAttention
else:
raise ValueError(
"For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
f"but got {config.encoder_attention_type}."
)
self.layer = nn.ModuleList()
self.layer.append(attention_layer(config, has_relative_attention_bias=has_relative_attention_bias))
if self.is_decoder:
self.layer.append(LongT5LayerCrossAttention(config))
self.layer.append(LongT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
):
if past_key_value is not None:
if not self.is_decoder:
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
cross_attn_past_key_value = past_key_value[2:]
else:
self_attn_past_key_value, cross_attn_past_key_value = None, None
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
# the actual query length is unknown for cross attention
# if using past key value states. Need to inject it here
if present_key_value_state is not None:
query_length = present_key_value_state[0].shape[2]
else:
query_length = None
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
query_length=query_length,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = cross_attention_outputs[0]
# Combine self attn and cross attn key value states
if present_key_value_state is not None:
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class LongT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongT5Config
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
@property
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, LongT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, LongT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, LongT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
if isinstance(module, LongT5TransientGlobalAttention):
module.global_relative_attention_bias.weight.data.normal_(
mean=0.0, std=factor * ((d_model) ** -0.5)
)
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._set_gradient_checkpointing with T5->LongT5
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (LongT5Attention, LongT5Stack)):
module.gradient_checkpointing = value
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->LongT5
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
assert decoder_start_token_id is not None, (
"self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the"
" pad_token_id. See LongT5 docs for more information"
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
return shifted_input_ids
class LongT5Stack(LongT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.block = nn.ModuleList(
[LongT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
)
self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings
def get_input_embeddings(self):
return self.embed_tokens
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
if use_cache is True:
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length).to(inputs_embeds.device)
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
# We use local attention in encoder self-attention, otherwise standard self & cross attentions are used
if self.is_decoder:
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape, inputs_embeds.device
)
elif self.config.encoder_attention_type == "local":
extended_attention_mask = _get_local_attention_mask(attention_mask, self.block_len, inputs_embeds.device)
else: # we need to use both local attention mask and standard extended mask for transient-global attention
extended_attention_mask = attention_mask
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return tuple(module(*inputs, use_cache, output_attentions))
return custom_forward
layer_outputs = checkpoint(
create_custom_forward(layer_module),
hidden_states,
extended_attention_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (present_key_value_state,)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
LONGT5_START_DOCSTRING = r"""
The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long
Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo
Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising
generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different
efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LongT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LONGT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5
Training](./longt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
LONGT5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting raw hidden-states without any specific head on top.",
LONGT5_START_DOCSTRING,
)
class LongT5Model(LongT5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder\.embed_tokens\.weight",
r"decoder\.embed_tokens\.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, LongT5Model
>>> tokenizer = T5Tokenizer.from_pretrained("google/LongT5-Local-Base")
>>> model = LongT5Model.from_pretrained("google/LongT5-Local-Base")
>>> # Let's try a very long encoder input.
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING)
class LongT5ForConditionalGeneration(LongT5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder\.embed_tokens\.weight",
r"decoder\.embed_tokens\.weight",
r"lm_head\.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
>>> model = LongT5ForConditionalGeneration.from_pretrained(
... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps"
... )
>>> # Let's try a very long input.
>>> input_ids = tokenizer(
... "summarize: " + 100 * "studies have shown that owning a dog is good for you ", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
abstractthe aim of this article is to summarize the studies have shown that owning a dog
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past
reordered_decoder_past = ()
for layer_past_states in past:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
assert len(reordered_layer_past_states) == len(layer_past_states)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
LONGT5_START_DOCSTRING,
)
class LongT5EncoderModel(LongT5PreTrainedModel):
authorized_missing_keys = [
r"encoder\.embed_tokens\.weight",
]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LONGT5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/LongT5-Local-Base")
>>> model = LongT5EncoderModel.from_pretrained("google/LongT5-Local-Base")
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
......@@ -281,6 +281,13 @@ class FeaturesManager:
"token-classification",
onnx_config_cls="models.layoutlm.LayoutLMOnnxConfig",
),
"longt5": supported_features_mapping(
"default",
"default-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
onnx_config_cls="models.longt5.LongT5OnnxConfig",
),
"marian": supported_features_mapping(
"default",
"default-with-past",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment