Unverified Commit a6b77598 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Add Image Processors (#19796)



* Add CLIP image processor

* Crop size as dict too

* Update warning

* Actually use logger this time

* Normalize doesn't change dtype of input

* Add perceiver image processor

* Tidy up

* Add DPT image processor

* Add Vilt image processor

* Tidy up

* Add poolformer image processor

* Tidy up

* Add LayoutLM v2 and v3 imsge processors

* Tidy up

* Add Flava image processor

* Tidy up

* Add deit image processor

* Tidy up

* Add ConvNext image processor

* Tidy up

* Add levit image processor

* Add segformer image processor

* Add in post processing

* Fix up

* Add ImageGPT image processor

* Fixup

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Add VideoMAE image processor

* Tidy up

* Add ImageGPT image processor

* Fixup

* Add ViT image processor

* Tidy up

* Add beit image processor

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Fix up

* Fix flava and remove tree module

* Fix image classification pipeline failing tests

* Update feature extractor in trainer scripts

* Update pad_if_smaller to accept tuple and int size

* Update for image segmentation pipeline

* Update src/transformers/models/perceiver/image_processing_perceiver.py
Co-authored-by: default avatarAlara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/image_processing_utils.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/beit/image_processing_beit.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* PR comments - docstrings; remove accidentally added resize; var names

* Update docstrings

* Add exception if size is not in the right format

* Fix exception check

* Fix up

* Use shortest_edge in tuple in script
Co-authored-by: default avatarAlara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
parent 2e3452af
......@@ -361,9 +361,12 @@ For computer vision tasks, it is common to add some type of data augmentation to
>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor
>>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
>>> _transforms = Compose(
... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
>>> size = (
... feature_extractor.size["shortest_edge"]
... if "shortest_edge" in feature_extractor.size
... else (feature_extractor.size["height"], feature_extractor.size["width"])
... )
>>> _transforms = Compose([RandomResizedCrop(size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize])
```
2. The model accepts [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) as its input, which is generated by the feature extractor. Create a function that generates `pixel_values` from the transforms:
......
......@@ -83,7 +83,12 @@ Apply several image transformations to the dataset to make the model more robust
>>> from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
>>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
>>> _transforms = Compose([RandomResizedCrop(feature_extractor.size), ToTensor(), normalize])
>>> size = (
... feature_extractor.size["shortest_edge"]
... if "shortest_edge" in feature_extractor.size
... else (feature_extractor.size["height"], feature_extractor.size["width"])
... )
>>> _transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize])
```
Create a preprocessing function that will apply the transforms and return the `pixel_values` - the inputs to the model - of the image:
......
......@@ -291,10 +291,14 @@ def main():
)
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in feature_extractor.size:
size = feature_extractor.size["shortest_edge"]
else:
size = (feature_extractor.size["height"], feature_extractor.size["width"])
normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
_train_transforms = Compose(
[
RandomResizedCrop(feature_extractor.size),
RandomResizedCrop(size),
RandomHorizontalFlip(),
ToTensor(),
normalize,
......@@ -302,8 +306,8 @@ def main():
)
_val_transforms = Compose(
[
Resize(feature_extractor.size),
CenterCrop(feature_extractor.size),
Resize(size),
CenterCrop(size),
ToTensor(),
normalize,
]
......
......@@ -315,10 +315,14 @@ def main():
# Preprocessing the datasets
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in feature_extractor.size:
size = feature_extractor.size["shortest_edge"]
else:
size = (feature_extractor.size["height"], feature_extractor.size["width"])
normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
train_transforms = Compose(
[
RandomResizedCrop(feature_extractor.size),
RandomResizedCrop(size),
RandomHorizontalFlip(),
ToTensor(),
normalize,
......@@ -326,8 +330,8 @@ def main():
)
val_transforms = Compose(
[
Resize(feature_extractor.size),
CenterCrop(feature_extractor.size),
Resize(size),
CenterCrop(size),
ToTensor(),
normalize,
]
......
......@@ -298,10 +298,14 @@ def main():
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in feature_extractor.size:
size = feature_extractor.size["shortest_edge"]
else:
size = (feature_extractor.size["height"], feature_extractor.size["width"])
transforms = Compose(
[
Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
RandomResizedCrop(feature_extractor.size, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC),
RandomResizedCrop(size, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std),
......
......@@ -57,11 +57,10 @@ require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/sema
def pad_if_smaller(img, size, fill=0):
min_size = min(img.size)
if min_size < size:
size = (size, size) if isinstance(size, int) else size
original_width, original_height = img.size
pad_height = size - original_height if original_height < size else 0
pad_width = size - original_width if original_width < size else 0
pad_height = size[1] - original_height if original_height < size[1] else 0
pad_width = size[0] - original_width if original_width < size[0] else 0
img = functional.pad(img, (0, 0, pad_width, pad_height), fill=fill)
return img
......@@ -110,12 +109,12 @@ class RandomResize:
class RandomCrop:
def __init__(self, size):
self.size = size
self.size = size if isinstance(size, tuple) else (size, size)
def __call__(self, image, target):
image = pad_if_smaller(image, self.size)
target = pad_if_smaller(target, self.size, fill=255)
crop_params = transforms.RandomCrop.get_params(image, (self.size, self.size))
crop_params = transforms.RandomCrop.get_params(image, self.size)
image = functional.crop(image, *crop_params)
target = functional.crop(target, *crop_params)
return image, target
......@@ -359,7 +358,7 @@ def main():
references=labels,
num_labels=len(id2label),
ignore_index=0,
reduce_labels=feature_extractor.reduce_labels,
reduce_labels=feature_extractor.do_reduce_labels,
)
# add per category metrics as individual key-value pairs
per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
......@@ -396,10 +395,15 @@ def main():
# Define torchvision transforms to be applied to each image + target.
# Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
# Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
if "shortest_edge" in feature_extractor.size:
# We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
size = (feature_extractor.size["shortest_edge"], feature_extractor.size["shortest_edge"])
else:
size = (feature_extractor.size["height"], feature_extractor.size["width"])
train_transforms = Compose(
[
ReduceLabels() if data_args.reduce_labels else Identity(),
RandomCrop(size=feature_extractor.size),
RandomCrop(size=size),
RandomHorizontalFlip(flip_prob=0.5),
PILToTensor(),
ConvertImageDtype(torch.float),
......@@ -411,7 +415,7 @@ def main():
val_transforms = Compose(
[
ReduceLabels() if data_args.reduce_labels else Identity(),
Resize(size=(feature_extractor.size, feature_extractor.size)),
Resize(size=size),
PILToTensor(),
ConvertImageDtype(torch.float),
Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std),
......
......@@ -405,10 +405,15 @@ def main():
# Define torchvision transforms to be applied to each image + target.
# Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
# Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
if "shortest_edge" in feature_extractor.size:
# We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
size = (feature_extractor.size["shortest_edge"], feature_extractor.size["shortest_edge"])
else:
size = (feature_extractor.size["height"], feature_extractor.size["width"])
train_transforms = Compose(
[
ReduceLabels() if args.reduce_labels else Identity(),
RandomCrop(size=feature_extractor.size),
RandomCrop(size=size),
RandomHorizontalFlip(flip_prob=0.5),
PILToTensor(),
ConvertImageDtype(torch.float),
......@@ -420,7 +425,7 @@ def main():
val_transforms = Compose(
[
ReduceLabels() if args.reduce_labels else Identity(),
Resize(size=(feature_extractor.size, feature_extractor.size)),
Resize(size=size),
PILToTensor(),
ConvertImageDtype(torch.float),
Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std),
......
......@@ -13,6 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Iterable, Optional, Union
from .feature_extraction_utils import BatchFeature as BaseBatchFeature
from .feature_extraction_utils import FeatureExtractionMixin
from .utils import logging
......@@ -48,7 +50,72 @@ class BaseImageProcessor(ImageProcessorMixin):
super().__init__(**kwargs)
def __call__(self, images, **kwargs) -> BatchFeature:
"""Preprocess an image or a batch of images."""
return self.preprocess(images, **kwargs)
def preprocess(self, images, **kwargs) -> BatchFeature:
raise NotImplementedError("Each image processor must implement its own preprocess method")
def get_size_dict(
size: Union[int, Iterable[int], Dict[str, int]] = None,
max_size: Optional[int] = None,
height_width_order: bool = True,
default_to_square: bool = True,
) -> dict:
"""
Converts the old size parameter in the config into the new dict expected in the config. This is to ensure backwards
compatibility with the old feature extractor configs and removes ambiguity over whether the tuple is in (height,
width) or (width, height) format.
- If `size` is tuple, it is converted to `{"height": size[0], "width": size[1]}` or `{"height": size[1], "width":
size[0]}` if `height_width_order` is `False`.
- If `size` is an int, and `default_to_square` is `True`, it is converted to `{"height": size, "width": size}`.
- If `size` is an int and `default_to_square` is False, it is converted to `{"shortest_edge": size}`. If `max_size`
is set, it is added to the dict as `{"longest_edge": max_size}`.
Args:
size (`Union[int, Iterable[int], Dict[str, int]]`, *optional*):
The `size` parameter to be cast into a size dictionary.
max_size (`Optional[int]`, *optional*):
The `max_size` parameter to be cast into a size dictionary.
height_width_order (`bool`, *optional*, defaults to `True`):
If `size` is a tuple, whether it's in (height, width) or (width, height) order.
default_to_square (`bool`, *optional*, defaults to `True`):
If `size` is an int, whether to default to a square image or not.
"""
# If a dict is passed, we check if it's a valid size dict and then return it.
if isinstance(size, dict):
size_keys = set(size.keys())
if (
size_keys != set(["height", "width"])
and size_keys != set(["shortest_edge"])
and size_keys != set(["shortest_edge", "longest_edge"])
):
raise ValueError(
"The size dict must contain either the keys ('height', 'width') or ('shortest_edge')"
f"or ('shortest_edge', 'longest_edge') but got {size_keys}"
)
return size
# By default, if size is an int we assume it represents a tuple of (size, size).
elif isinstance(size, int) and default_to_square:
if max_size is not None:
raise ValueError("Cannot specify both size as an int, with default_to_square=True and max_size")
size_dict = {"height": size, "width": size}
# In other configs, if size is an int and default_to_square is False, size represents the length of the shortest edge after resizing.
elif isinstance(size, int) and not default_to_square:
if max_size is not None:
size_dict = {"shortest_edge": size, "longest_edge": max_size}
else:
size_dict = {"shortest_edge": size}
elif isinstance(size, (tuple, list)) and height_width_order:
size_dict = {"height": size[0], "width": size[1]}
elif isinstance(size, (tuple, list)) and not height_width_order:
size_dict = {"height": size[1], "width": size[0]}
logger.warning(
"The size parameter should be a dictionary with keys ('height', 'width'), ('shortest_edge', 'longest_edge')"
f" or ('shortest_edge',) got {size}. Setting as {size_dict}.",
)
return size_dict
......@@ -139,6 +139,9 @@ def to_pil_image(
# If the channel as been moved to first dim, we put it back at the end.
image = to_channel_dimension_format(image, ChannelDimension.LAST)
# If there is a single channel, we squeeze it, as otherwise PIL can't handle it.
image = np.squeeze(image, axis=-1) if image.shape[-1] == 1 else image
# PIL.Image can only store uint8 values, so we rescale the image to be between 0 and 255 if needed.
do_rescale = isinstance(image.flat[0], float) if do_rescale is None else do_rescale
if do_rescale:
......@@ -259,6 +262,9 @@ def resize(
if return_numpy:
resized_image = np.array(resized_image)
# If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
# so we need to add it back if necessary.
resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
resized_image = to_channel_dimension_format(resized_image, data_format)
return resized_image
......@@ -303,12 +309,14 @@ def normalize(
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
else:
mean = [mean] * num_channels
mean = np.array(mean, dtype=image.dtype)
if isinstance(std, Iterable):
if len(std) != num_channels:
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
else:
std = [std] * num_channels
std = np.array(std, dtype=image.dtype)
if input_data_format == ChannelDimension.LAST:
image = (image - mean) / std
......@@ -372,6 +380,7 @@ def center_crop(
orig_height, orig_width = get_image_size(image)
crop_height, crop_width = size
crop_height, crop_width = int(crop_height), int(crop_width)
# In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
top = (orig_height - crop_height) // 2
......
......@@ -72,7 +72,15 @@ def is_valid_image(img):
def valid_images(imgs):
return all(is_valid_image(img) for img in imgs)
# If we have an list of images, make sure every image is valid
if isinstance(imgs, (list, tuple)):
for img in imgs:
if not valid_images(img):
return False
# If not a list of tuple, we have been given a single image or batched tensor of images
elif not is_valid_image(imgs):
return False
return True
def is_batched(img):
......
......@@ -14,258 +14,10 @@
# limitations under the License.
"""Feature extractor class for BEiT."""
from typing import List, Optional, Tuple, Union
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
import numpy as np
from PIL import Image
from transformers.image_utils import PILImageResampling
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ImageFeatureExtractionMixin,
ImageInput,
is_torch_tensor,
)
from ...utils import TensorType, is_torch_available, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class BeitFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a BEiT feature extractor.
This feature extractor inherits from [`~feature_extraction_utils.FeatureExtractionMixin`] which contains most of
the main methods. Users should refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size (`int` or `Tuple(int)`, *optional*, defaults to 256):
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an
integer is provided, then the input will be resized to (size, size). Only has an effect if `do_resize` is
set to `True`.
resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BICUBIC`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
image is padded with 0's and then center cropped.
crop_size (`int`, *optional*, defaults to 224):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with `image_mean` and `image_std`.
image_mean (`List[int]`, defaults to `[0.5, 0.5, 0.5]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (`List[int]`, defaults to `[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=256,
resample=PILImageResampling.BICUBIC,
do_center_crop=True,
crop_size=224,
do_normalize=True,
image_mean=None,
image_std=None,
reduce_labels=False,
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.reduce_labels = reduce_labels
def __call__(
self,
images: ImageInput,
segmentation_maps: ImageInput = None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
<Tip warning={true}>
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
</Tip>
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
segmentation_maps (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
Optionally, the corresponding semantic segmentation maps with the pixel-wise annotations.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
width).
- **labels** -- Optional labels to be fed to a model (when `segmentation_maps` are provided)
"""
# Input type checking for clearer error
valid_images = False
valid_segmentation_maps = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
# Check that segmentation maps has a valid type
if segmentation_maps is not None:
if isinstance(segmentation_maps, (Image.Image, np.ndarray)) or is_torch_tensor(segmentation_maps):
valid_segmentation_maps = True
elif isinstance(segmentation_maps, (list, tuple)):
if (
len(segmentation_maps) == 0
or isinstance(segmentation_maps[0], (Image.Image, np.ndarray))
or is_torch_tensor(segmentation_maps[0])
):
valid_segmentation_maps = True
if not valid_segmentation_maps:
raise ValueError(
"Segmentation maps must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single"
" example),`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of"
" examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
if segmentation_maps is not None:
segmentation_maps = [segmentation_maps]
# reduce zero label if needed
if self.reduce_labels:
if segmentation_maps is not None:
for idx, map in enumerate(segmentation_maps):
if not isinstance(map, np.ndarray):
map = np.array(map)
# avoid using underflow conversion
map[map == 0] = 255
map = map - 1
map[map == 254] = 255
segmentation_maps[idx] = Image.fromarray(map.astype(np.uint8))
# transformations (resizing + center cropping + normalization)
if self.do_resize and self.size is not None and self.resample is not None:
images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
if segmentation_maps is not None:
segmentation_maps = [
self.resize(map, size=self.size, resample=self.resample) for map in segmentation_maps
]
if self.do_center_crop and self.crop_size is not None:
images = [self.center_crop(image, self.crop_size) for image in images]
if segmentation_maps is not None:
segmentation_maps = [self.center_crop(map, size=self.crop_size) for map in segmentation_maps]
if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
# return as BatchFeature
data = {"pixel_values": images}
if segmentation_maps is not None:
labels = []
for map in segmentation_maps:
if not isinstance(map, np.ndarray):
map = np.array(map)
labels.append(map.astype(np.int64))
# cast to np.int64
data["labels"] = labels
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`BeitForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If left to
None, predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
BeitFeatureExtractor = BeitImageProcessor
This diff is collapsed.
......@@ -14,155 +14,11 @@
# limitations under the License.
"""Feature extractor class for CLIP."""
from typing import List, Optional, Union
import numpy as np
from PIL import Image
from transformers.image_utils import PILImageResampling
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...image_utils import ImageFeatureExtractionMixin, is_torch_tensor
from ...utils import TensorType, logging
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
logger = logging.get_logger(__name__)
class CLIPFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a CLIP feature extractor.
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size (`int`, *optional*, defaults to 224):
Resize the input to the given size. Only has an effect if `do_resize` is set to `True`.
resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BICUBIC`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
image is padded with 0's and then center cropped.
crop_size (`int`, *optional*, defaults to 224):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with `image_mean` and `image_std`.
image_mean (`List[int]`, defaults to `[0.485, 0.456, 0.406]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (`List[int]`, defaults to `[0.229, 0.224, 0.225]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
convert_rgb (`bool`, defaults to `True`):
Whether or not to convert `PIL.Image.Image` into `RGB` format
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=224,
resample=PILImageResampling.BICUBIC,
do_center_crop=True,
crop_size=224,
do_normalize=True,
image_mean=None,
image_std=None,
do_convert_rgb=True,
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else [0.48145466, 0.4578275, 0.40821073]
self.image_std = image_std if image_std is not None else [0.26862954, 0.26130258, 0.27577711]
self.do_convert_rgb = do_convert_rgb
def __call__(
self,
images: Union[
Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"] # noqa
],
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
<Tip warning={true}>
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
</Tip>
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model.
"""
# Input type checking for clearer error
valid_images = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
# transformations (convert rgb + resizing + center cropping + normalization)
if self.do_convert_rgb:
images = [self.convert_rgb(image) for image in images]
if self.do_resize and self.size is not None and self.resample is not None:
images = [
self.resize(image=image, size=self.size, resample=self.resample, default_to_square=False)
for image in images
]
if self.do_center_crop and self.crop_size is not None:
images = [self.center_crop(image, self.crop_size) for image in images]
if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
# return as BatchFeature
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
CLIPFeatureExtractor = CLIPImageProcessor
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for CLIP."""
from typing import Any, Dict, List, Optional, Union
import numpy as np
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images
from ...utils import logging
from ...utils.import_utils import is_vision_available
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
def convert_to_rgb(image: Union[Any, PIL.Image.Image]) -> Union[Any, PIL.Image.Image]:
"""
Converts `PIL.Image.Image` to RGB format. Images in other formats are returned as is.
Args:
image (`PIL.Image.Image`):
The image to convert.
"""
if not isinstance(image, PIL.Image.Image):
return image
return image.convert("RGB")
class CLIPImageProcessor(BaseImageProcessor):
r"""
Constructs a CLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize:
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Image standard deviation.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else [0.48145466, 0.4578275, 0.40821073]
self.image_std = image_std if image_std is not None else [0.26862954, 0.26130258, 0.27577711]
self.do_convert_rgb = do_convert_rgb
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image. If the image is too small to be cropped to the size given, it will be padded (so the
returned result will always be of size `size`).
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image in the form of a dictionary with keys `height` and `width`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -14,157 +14,11 @@
# limitations under the License.
"""Feature extractor class for ConvNeXT."""
from typing import Optional, Union
import numpy as np
from PIL import Image
from transformers.image_utils import PILImageResampling
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ImageFeatureExtractionMixin,
ImageInput,
is_torch_tensor,
)
from ...utils import TensorType, logging
from ...utils import logging
from .image_processing_convnext import ConvNextImageProcessor
logger = logging.get_logger(__name__)
class ConvNextFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a ConvNeXT feature extractor.
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize (and optionally center crop) the input to a certain `size`.
size (`int`, *optional*, defaults to 224):
Resize the input to the given size. If 384 or larger, the image is resized to (`size`, `size`). Else, the
smaller edge of the image will be matched to int(`size`/ `crop_pct`), after which the image is cropped to
`size`. Only has an effect if `do_resize` is set to `True`.
resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BICUBIC`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
crop_pct (`float`, *optional*):
The percentage of the image to crop. If `None`, then a cropping percentage of 224 / 256 is used. Only has
an effect if `do_resize` is set to `True` and `size` < 384.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with mean and standard deviation.
image_mean (`List[int]`, defaults to `[0.485, 0.456, 0.406]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (`List[int]`, defaults to `[0.229, 0.224, 0.225]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=224,
resample=PILImageResampling.BICUBIC,
crop_pct=None,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.crop_pct = crop_pct
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __call__(
self, images: ImageInput, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
<Tip warning={true}>
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
</Tip>
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
width).
"""
# Input type checking for clearer error
valid_images = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
# transformations (resizing and optional center cropping + normalization)
if self.do_resize and self.size is not None:
if self.size >= 384:
# warping (no cropping) when evaluated at 384 or larger
images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
else:
if self.crop_pct is None:
self.crop_pct = 224 / 256
size = int(self.size / self.crop_pct)
# to maintain same ratio w.r.t. 224 images
images = [
self.resize(image=image, size=size, default_to_square=False, resample=self.resample)
for image in images
]
images = [self.center_crop(image=image, size=self.size) for image in images]
if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
# return as BatchFeature
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
ConvNextFeatureExtractor = ConvNextImageProcessor
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for ConvNeXT."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class ConvNextImageProcessor(BaseImageProcessor):
r"""
Constructs a ConvNeXT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
by `do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 384}`):
Resolution of the output image after `resize` is applied. If `size["shortest_edge"]` >= 384, the image is
resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will
be matched to `int(size["shortest_edge"]/crop_pct)`, after which the image is cropped to
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. Can
be overriden by `size` in the `preprocess` method.
crop_pct (`float` *optional*, defaults to 244 / 256):
Percentage of the image to crop. Only has an effect if `do_resize` is `True` and size < 384. Can be
overriden by `crop_pct` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overriden by `resample` in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
crop_pct: float = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 384}
size = get_size_dict(size, default_to_square=False)
self.do_resize = do_resize
self.size = size
# Default value set here for backwards compatibility where the value in config is None
self.crop_pct = crop_pct if crop_pct is not None else 224 / 256
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
crop_pct: float,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary of the form `{"shortest_edge": int}`, specifying the size of the output image. If
`size["shortest_edge"]` >= 384 image is resized to `(size["shortest_edge"], size["shortest_edge"])`.
Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"] / crop_pct)`,
after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`.
crop_pct (`float`):
Percentage of the image to crop. Only has an effect if size < 384.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}")
shortest_edge = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
resize_shortest_edge = int(shortest_edge / crop_pct)
resize_size = get_resize_output_image_size(image, size=resize_shortest_edge, default_to_square=False)
image = resize(image=image, size=resize_size, resample=resample, data_format=data_format, **kwargs)
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=image, size=(shortest_edge, shortest_edge), data_format=data_format, **kwargs)
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
image, size=(shortest_edge, shortest_edge), resample=resample, data_format=data_format, **kwargs
)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
crop_pct: float = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image
is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the
image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`.
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
Percentage of the image to crop if size < 384.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of `PILImageResampling`, filters. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, crop_pct=crop_pct, resample=resample) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -308,7 +308,7 @@ def convert_cvt_checkpoint(cvt_model, image_size, cvt_file_name, pytorch_dump_fo
model = CvtForImageClassification(config)
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/convnext-base-224-22k-1k")
feature_extractor.size = image_size
feature_extractor.size["shortest_edge"] = image_size
original_weights = torch.load(cvt_file_name, map_location=torch.device("cpu"))
huggingface_weights = OrderedDict()
......
......@@ -14,150 +14,10 @@
# limitations under the License.
"""Feature extractor class for DeiT."""
from typing import Optional, Union
import numpy as np
from PIL import Image
from transformers.image_utils import PILImageResampling
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ImageFeatureExtractionMixin,
ImageInput,
is_torch_tensor,
)
from ...utils import TensorType, logging
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
logger = logging.get_logger(__name__)
class DeiTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a DeiT feature extractor.
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size (`int` or `Tuple(int)`, *optional*, defaults to 256):
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an
integer is provided, then the input will be resized to (size, size). Only has an effect if `do_resize` is
set to `True`.
resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BICUBIC`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
image is padded with 0's and then center cropped.
crop_size (`int`, *optional*, defaults to 224):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with `image_mean` and `image_std`.
image_mean (`List[int]`, defaults to `[0.485, 0.456, 0.406]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (`List[int]`, defaults to `[0.229, 0.224, 0.225]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=256,
resample=PILImageResampling.BICUBIC,
do_center_crop=True,
crop_size=224,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __call__(
self, images: ImageInput, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
<Tip warning={true}>
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
</Tip>
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
width).
"""
# Input type checking for clearer error
valid_images = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
# transformations (resizing + center cropping + normalization)
if self.do_resize and self.size is not None and self.resample is not None:
images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
if self.do_center_crop and self.crop_size is not None:
images = [self.center_crop(image, self.crop_size) for image in images]
if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
# return as BatchFeature
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
DeiTFeatureExtractor = DeiTImageProcessor
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for DeiT."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class DeiTImageProcessor(BaseImageProcessor):
r"""
Constructs a DeiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PIL.Image.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PIL.Image.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])` using the specified resampling filter.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(crop_size["height"], crop_size["width"])`. If the input size is smaller than
`crop_size` along any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample=None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
`True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -14,235 +14,11 @@
# limitations under the License.
"""Feature extractor class for DPT."""
from typing import List, Optional, Tuple, Union
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
import numpy as np
from PIL import Image
from transformers.image_utils import PILImageResampling
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ImageFeatureExtractionMixin,
ImageInput,
is_torch_tensor,
)
from ...utils import TensorType, is_torch_available, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class DPTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a DPT feature extractor.
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size ('int' or `Tuple(int)`, *optional*, defaults to 384):
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an
integer is provided, then the input will be resized to (size, size). Only has an effect if `do_resize` is
set to `True`.
ensure_multiple_of (`int`, *optional*, defaults to 1):
Ensure that the input is resized to a multiple of this value. Only has an effect if `do_resize` is set to
`True`.
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
Whether to keep the aspect ratio of the input. Only has an effect if `do_resize` is set to `True`.
resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BILINEAR`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with mean and standard deviation.
image_mean (`List[int]`, defaults to `[0.5, 0.5, 0.5]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (`List[int]`, defaults to `[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=384,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resample=PILImageResampling.BILINEAR,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.keep_aspect_ratio = keep_aspect_ratio
self.ensure_multiple_of = ensure_multiple_of
self.resample = resample
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def constrain_to_multiple_of(self, size, min_val=0, max_val=None):
y = (np.round(size / self.ensure_multiple_of) * self.ensure_multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(size / self.ensure_multiple_of) * self.ensure_multiple_of).astype(int)
if y < min_val:
y = (np.ceil(size / self.ensure_multiple_of) * self.ensure_multiple_of).astype(int)
return y
def update_size(self, image):
image = self.to_pil_image(image)
width, height = image.size
size = self.size
if isinstance(size, list):
size = tuple(size)
if isinstance(size, int) or len(size) == 1:
size = (size, size)
# determine new width and height
scale_width = size[0] / width
scale_height = size[1] / height
if self.keep_aspect_ratio:
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
new_width = self.constrain_to_multiple_of(scale_width * width)
new_height = self.constrain_to_multiple_of(scale_height * height)
return (new_width, new_height)
def __call__(
self, images: ImageInput, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
<Tip warning={true}>
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
</Tip>
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~file_utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
width).
"""
# Input type checking for clearer error
valid_images = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
# transformations (resizing + normalization)
if self.do_resize and self.size is not None:
for idx, image in enumerate(images):
size = self.update_size(image)
images[idx] = self.resize(image, size=size, resample=self.resample)
if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
# return as BatchFeature
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`DPTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`DPTForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If left to
None, predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
DPTFeatureExtractor = DPTImageProcessor
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment