"examples/legacy/run_language_modeling.py" did not exist on "f94f1c6016414e059fa4d8ef61ee194fdc891046"
Unverified Commit a6b77598 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Add Image Processors (#19796)



* Add CLIP image processor

* Crop size as dict too

* Update warning

* Actually use logger this time

* Normalize doesn't change dtype of input

* Add perceiver image processor

* Tidy up

* Add DPT image processor

* Add Vilt image processor

* Tidy up

* Add poolformer image processor

* Tidy up

* Add LayoutLM v2 and v3 imsge processors

* Tidy up

* Add Flava image processor

* Tidy up

* Add deit image processor

* Tidy up

* Add ConvNext image processor

* Tidy up

* Add levit image processor

* Add segformer image processor

* Add in post processing

* Fix up

* Add ImageGPT image processor

* Fixup

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Add VideoMAE image processor

* Tidy up

* Add ImageGPT image processor

* Fixup

* Add ViT image processor

* Tidy up

* Add beit image processor

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Fix up

* Fix flava and remove tree module

* Fix image classification pipeline failing tests

* Update feature extractor in trainer scripts

* Update pad_if_smaller to accept tuple and int size

* Update for image segmentation pipeline

* Update src/transformers/models/perceiver/image_processing_perceiver.py
Co-authored-by: default avatarAlara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/image_processing_utils.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/beit/image_processing_beit.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* PR comments - docstrings; remove accidentally added resize; var names

* Update docstrings

* Add exception if size is not in the right format

* Fix exception check

* Fix up

* Use shortest_edge in tuple in script
Co-authored-by: default avatarAlara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
parent 2e3452af
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for DPT."""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_batched,
is_torch_available,
is_torch_tensor,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
def get_resize_output_image_size(
input_image: np.ndarray, output_size: Union[int, Iterable[int]], keep_aspect_ratio: bool, multiple: int
) -> Tuple[int, int]:
def constraint_to_multiple_of(val, multiple, min_val=0, max_val=None):
x = round(val / multiple) * multiple
if max_val is not None and x > max_val:
x = math.floor(val / multiple) * multiple
if x < min_val:
x = math.ceil(val / multiple) * multiple
return x
output_size = (output_size, output_size) if isinstance(output_size, int) else output_size
input_height, input_width = get_image_size(input_image)
output_height, output_width = output_size
# determine new height and width
scale_height = output_height / input_height
scale_width = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
new_height = constraint_to_multiple_of(scale_height * input_height, multiple=multiple)
new_width = constraint_to_multiple_of(scale_width * input_width, multiple=multiple)
return (new_height, new_width)
class DPTImageProcessor(BaseImageProcessor):
r"""
Constructs a DPT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions. Can be overidden by `do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 384, "width": 384}`):
Size of the image after resizing. Can be overidden by `size` in `preprocess`.
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. Can
be overidden by `keep_aspect_ratio` in `preprocess`.
ensure_multiple_of (`int`, *optional*, defaults to `1`):
If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Can be overidden
by `ensure_multiple_of` in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Defines the resampling filter to use if resizing the image. Can be overidden by `resample` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overidden by `do_rescale` in
`preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overidden by `rescale_factor` in `preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
keep_aspect_ratio: bool = False,
ensure_multiple_of: int = 1,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 384, "width": 384}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.keep_aspect_ratio = keep_aspect_ratio
self.ensure_multiple_of = ensure_multiple_of
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
keep_aspect_ratio: bool = False,
ensure_multiple_of: int = 1,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to target size `(size["height"], size["width"])`. If `keep_aspect_ratio` is `True`, the image
is resized to the largest possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is
set, the image is resized to a size that is a multiple of this value.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Target size of the output image.
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved.
ensure_multiple_of (`int`, *optional*, defaults to `1`):
The image is resized to a size that is a multiple of this value.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Otherwise, the image is resized to size
specified in `size`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}")
output_size = get_resize_output_image_size(
image,
output_size=(size["height"], size["width"]),
keep_aspect_ratio=keep_aspect_ratio,
multiple=ensure_multiple_of,
)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: int = None,
keep_aspect_ratio: bool = None,
ensure_multiple_of: int = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after reszing. If `keep_aspect_ratio` is `True`, the image is resized to the largest
possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is set, the image is
resized to a size that is a multiple of this value.
keep_aspect_ratio (`bool`, *optional*, defaults to `self.keep_aspect_ratio`):
Whether to keep the aspect ratio of the image. If False, the image will be resized to (size, size). If
True, the image will be resized to keep the aspect ratio and the size will be the maximum possible.
ensure_multiple_of (`int`, *optional*, defaults to `self.ensure_multiple_of`):
Ensure that the image size is a multiple of this value.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
keep_aspect_ratio = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
ensure_multiple_of = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Args:
Converts the output of [`DPTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
outputs ([`DPTForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
......@@ -14,344 +14,10 @@
# limitations under the License.
"""Feature extractor class for FLAVA."""
import math
import random
from functools import lru_cache
from typing import Any, List, Optional, Tuple, Union
import numpy as np
from PIL import Image
from transformers.image_utils import PILImageResampling
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...image_utils import ImageFeatureExtractionMixin, is_torch_tensor
from ...utils import TensorType, logging
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
logger = logging.get_logger(__name__)
# These values are taken from CLIP
FLAVA_IMAGE_MEAN = [0.48145466, 0.4578275, 0.40821073]
FLAVA_IMAGE_STD = [0.26862954, 0.26130258, 0.27577711]
FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0]
FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0]
LOGIT_LAPLACE_EPS: float = 0.1
# Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py
class FlavaMaskingGenerator:
def __init__(
self,
input_size: Union[int, Tuple[int, int]] = 14,
total_mask_patches: int = 75,
mask_group_max_patches: Optional[int] = None,
mask_group_min_patches: int = 16,
mask_group_min_aspect_ratio: Optional[float] = 0.3,
mask_group_max_aspect_ratio: float = None,
):
if not isinstance(input_size, tuple):
input_size = (input_size,) * 2
self.height, self.width = input_size
self.num_patches = self.height * self.width
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
def __repr__(self):
repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
self.height,
self.width,
self.mask_group_min_patches,
self.mask_group_max_patches,
self.total_mask_patches,
self.log_aspect_ratio[0],
self.log_aspect_ratio[1],
)
return repr_str
def get_shape(self):
return self.height, self.width
def _mask(self, mask, max_mask_patches):
delta = 0
for _attempt in range(10):
target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
height = int(round(math.sqrt(target_area * aspect_ratio)))
width = int(round(math.sqrt(target_area / aspect_ratio)))
if width < self.width and height < self.height:
top = random.randint(0, self.height - height)
left = random.randint(0, self.width - width)
num_masked = mask[top : top + height, left : left + width].sum()
# Overlap
if 0 < height * width - num_masked <= max_mask_patches:
for i in range(top, top + height):
for j in range(left, left + width):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def __call__(self):
mask = np.zeros(shape=self.get_shape(), dtype=int)
mask_count = 0
while mask_count < self.total_mask_patches:
max_mask_patches = self.total_mask_patches - mask_count
max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
delta = self._mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
return mask
class FlavaFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a FLAVA feature extractor.
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size (`int`, *optional*, defaults to 224):
Resize the input to the given size. Only has an effect if `do_resize` is set to `True`.
resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BICUBIC`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
image is padded with 0's and then center cropped.
crop_size (`int`, *optional*, defaults to 224):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with `image_mean` and `image_std`.
image_mean (`Tuple[float, float, float]`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (`Tuple[float, float, float]`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
input_size_patches (`int`, *optional*, defaults to 14):
Number of patches in the image in height and width direction. 14x14 = 196 total patches.
total_mask_patches (`int`, *optional*, defaults to 75):
Total number of patches that should be masked.
mask_group_min_patches (`int`, *optional*, defaults to 16):
Minimum number of patches that should be masked.
mask_group_max_patches (`int`, *optional*, defaults to None):
Maximum number of patches that should be masked.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
Minimum aspect ratio of the mask window.
mask_group_max_aspect_ratio (`float`, *optional*, defaults to None):
Maximum aspect ratio of the mask window
codebook_do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input for codebook to a certain `codebook_size`.
codebook_size (`int`, *optional*, defaults to 224):
Resize the input for codebook to the given size. Only has an effect if `codebook_do_resize` is set to
`True`.
codebook_resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BICUBIC`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input for codebook at the center. If the input size is smaller than
`codebook_crop_size` along any edge, the image is padded with 0's and then center cropped.
codebook_crop_size (`int`, *optional*, defaults to 224):
Desired output size for codebook input when applying center-cropping. Only has an effect if
`codebook_do_center_crop` is set to `True`.
codebook_do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`.
codebook_image_mean (`Tuple[float, float, float]`, *optional*, defaults to `[0, 0, 0]`):
The sequence of means for each channel, to be used when normalizing images for codebook.
codebook_image_std (`Tuple[float, float, float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images for codebook.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Union[int, Tuple[int, int]] = 224,
resample: int = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Union[int, Tuple[int, int]] = 224,
do_normalize: bool = True,
image_mean: Tuple[float, float, float] = FLAVA_IMAGE_MEAN,
image_std: Tuple[float, float, float] = FLAVA_IMAGE_STD,
# Mask related params
input_size_patches: int = 14,
total_mask_patches: int = 75,
mask_group_min_patches: int = 16,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: float = 0.3,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
codebook_do_resize: bool = True,
codebook_size: bool = 112,
codebook_resample: int = PILImageResampling.LANCZOS,
codebook_do_center_crop: bool = True,
codebook_crop_size: int = 112,
codebook_do_map_pixels: bool = True,
codebook_do_normalize: bool = True,
codebook_image_mean: Tuple[float, float, float] = FLAVA_CODEBOOK_MEAN,
codebook_image_std: Tuple[float, float, float] = FLAVA_CODEBOOK_STD,
**kwargs: Any,
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_std = codebook_image_std
@property
@lru_cache()
def masking_generator(self):
return FlavaMaskingGenerator(
input_size=self.input_size_patches,
total_mask_patches=self.total_mask_patches,
mask_group_min_patches=self.mask_group_min_patches,
mask_group_max_patches=self.mask_group_max_patches,
mask_group_min_aspect_ratio=self.mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=self.mask_group_max_aspect_ratio,
)
def map_pixels(self, x):
return (1 - 2 * LOGIT_LAPLACE_EPS) * x + LOGIT_LAPLACE_EPS
def __call__(
self,
images: Union[
Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"] # noqa
],
return_image_mask: Optional[bool] = None,
return_codebook_pixels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs: Any
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
<Tip warning={true}>
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
</Tip>
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_image_mask (`bool`, *optional*, defaults to None):
If True, the processor will return `bool_masked_pos` suggesting masks for image's patch version.
return_codebook_pixels (`bool`, *optional*, defaults to None):
If True, the processor will return `codebook_pixel_values` providing image pixels to be used with the
default FLAVA codebook. Used in pretraining by Masked Image Modeling (MIM) loss.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model.
"""
# Input type checking for clearer error
if isinstance(images, (list, tuple)) and len(images) != 0:
self._ensure_format_supported(images[0])
else:
self._ensure_format_supported(images)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
images_for_codebook = images
# transformations (resizing + center cropping + normalization)
if self.do_resize and self.size is not None and self.resample is not None:
images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
if self.do_center_crop and self.crop_size is not None:
images = [self.center_crop(image, self.crop_size) for image in images]
if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
# return as BatchFeature
data = {"pixel_values": images}
if return_codebook_pixels:
images = images_for_codebook
if self.codebook_do_resize and self.codebook_size is not None and self.codebook_resample is not None:
images = [
self.resize(image=image, size=self.codebook_size, resample=self.codebook_resample)
for image in images
]
if self.codebook_do_center_crop and self.codebook_crop_size is not None:
images = [self.center_crop(image, self.codebook_crop_size) for image in images]
if self.codebook_do_normalize:
images = [
self.normalize(image=image, mean=self.codebook_image_mean, std=self.codebook_image_std)
for image in images
]
if self.codebook_do_map_pixels:
images = [self.map_pixels(image) for image in images]
data["codebook_pixel_values"] = images
if return_image_mask:
masks = [self.masking_generator() for _ in images]
data["bool_masked_pos"] = masks
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
FlavaFeatureExtractor = FlavaImageProcessor
This diff is collapsed.
......@@ -37,16 +37,16 @@ class GLPNImageProcessor(BaseImageProcessor):
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Set the class default for the `do_resize` parameter. Controls whether to resize the image's (height, width)
dimensions, rounding them down to the closest multiple of `size_divisor`.
Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of
`size_divisor`. Can be overridden by `do_resize` in `preprocess`.
size_divisor (`int`, *optional*, defaults to 32):
Set the class default for the `size_divisor` parameter. When `do_resize` is `True`, images are resized so
their height and width are rounded down to the closest multiple of `size_divisor`.
When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest
multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`.
resample (`PIL.Image` resampling filter, *optional*, defaults to `PIL.Image.Resampling.BILINEAR`):
Set the class default for `resample`. Defines the resampling filter to use if resizing the image.
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Set the class default for the `do_rescale` parameter. Controls whether or not to apply the scaling factor
(to make pixel values floats between 0. and 1.).
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be
overridden by `do_rescale` in `preprocess`.
"""
model_input_names = ["pixel_values"]
......@@ -81,7 +81,7 @@ class GLPNImageProcessor(BaseImageProcessor):
`size_divisor`.
resample:
`PIL.Image` resampling filter to use when resizing the image e.g. `PIL.Image.Resampling.BILINEAR`.
data_format (`ChannelDimension`, *optional*):
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If `None`, the channel dimension format of the input
image is used. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
......@@ -108,7 +108,7 @@ class GLPNImageProcessor(BaseImageProcessor):
The image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`ChannelDimension`, *optional*):
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If `None`, the channel dimension format of the input
image is used. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
......@@ -146,14 +146,14 @@ class GLPNImageProcessor(BaseImageProcessor):
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
return_tensors (`str`, *optional*):
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
......
......@@ -14,168 +14,11 @@
# limitations under the License.
"""Feature extractor class for ImageGPT."""
from typing import List, Optional, Union
import numpy as np
from PIL import Image
from transformers.image_utils import PILImageResampling
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...image_utils import ImageFeatureExtractionMixin, is_torch_tensor
from ...utils import TensorType, logging
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
logger = logging.get_logger(__name__)
def squared_euclidean_distance(a, b):
b = b.T
a2 = np.sum(np.square(a), axis=1)
b2 = np.sum(np.square(b), axis=0)
ab = np.matmul(a, b)
d = a2[:, None] - 2 * ab + b2[None, :]
return d
def color_quantize(x, clusters):
x = x.reshape(-1, 3)
d = squared_euclidean_distance(x, clusters)
return np.argmin(d, axis=1)
class ImageGPTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs an ImageGPT feature extractor. This feature extractor can be used to resize images to a smaller
resolution (such as 32x32 or 64x64), normalize them and finally color quantize them to obtain sequences of "pixel
values" (color clusters).
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
clusters (`np.ndarray`):
The color clusters to use, as a `np.ndarray` of shape `(n_clusters, 3)`.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size (`int` or `Tuple(int)`, *optional*, defaults to 32):
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an
integer is provided, then the input will be resized to (size, size). Only has an effect if `do_resize` is
set to `True`.
resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BILINEAR`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input to the range between -1 and +1.
"""
model_input_names = ["input_ids"]
def __init__(
self, clusters, do_resize=True, size=32, resample=PILImageResampling.BILINEAR, do_normalize=True, **kwargs
):
super().__init__(**kwargs)
self.clusters = np.asarray(clusters)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_normalize = do_normalize
def normalize(self, image):
"""
Normalizes `image` into the range -1 to +1.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image to normalize.
Returns:
`np.ndarray`: The normalized image.
"""
image = self.to_numpy_array(image, rescale=False, channel_first=False)
return image / 127.5 - 1
def __call__(
self,
images: Union[
Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"] # noqa
],
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
<Tip warning={true}>
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
</Tip>
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- Input IDs to be fed to a model, of shape `(batch_size, height * width)`.
"""
# Input type checking for clearer error
valid_images = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
# transformations (resizing + normalization)
if self.do_resize and self.size is not None:
images = [self.resize(image, size=self.size, resample=self.resample) for image in images]
if self.do_normalize:
images = [self.normalize(image) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
images = np.array(images)
images = color_quantize(images, self.clusters).reshape(images.shape[:-1])
# flatten to (batch_size, height*width)
batch_size = images.shape[0]
images = images.reshape(batch_size, -1)
# return as BatchFeature
data = {"input_ids": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
ImageGPTFeatureExtractor = ImageGPTImageProcessor
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for ImageGPT."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
def squared_euclidean_distance(a, b):
b = b.T
a2 = np.sum(np.square(a), axis=1)
b2 = np.sum(np.square(b), axis=0)
ab = np.matmul(a, b)
d = a2[:, None] - 2 * ab + b2[None, :]
return d
def color_quantize(x, clusters):
x = x.reshape(-1, 3)
d = squared_euclidean_distance(x, clusters)
return np.argmin(d, axis=1)
class ImageGPTImageProcessor(BaseImageProcessor):
r"""
Constructs a ImageGPT image processor. This image processor can be used to resize images to a smaller resolution
(such as 32x32 or 64x64), normalize them and finally color quantize them to obtain sequences of "pixel values"
(color clusters).
Args:
clusters (`np.ndarray`, *optional*):
The color clusters to use, as a `np.ndarray` of shape `(n_clusters, 3)` when color quantizing. Can be
overriden by `clusters` in `preprocess`.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's dimensions to `(size["height"], size["width"])`. Can be overridden by
`do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the image after resizing. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image pixel value to between [-1, 1]. Can be overridden by `do_normalize` in
`preprocess`.
do_color_quantize (`bool`, *optional*, defaults to `True`):
Whether to color quantize the image. Can be overridden by `do_color_quantize` in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
# clusters is a first argument to maintain backwards compatibility with the old ImageGPTFeatureExtractor
clusters: Optional[np.ndarray] = None,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_normalize: bool = True,
do_color_quantize: bool = True,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
self.clusters = clusters
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_normalize = do_normalize
self.do_color_quantize = do_color_quantize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to (size["height"], size["width"]).
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def normalize(
self,
image: np.ndarray,
data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Normalizes an images' pixel values to between [-1, 1].
Args:
image (`np.ndarray`):
Image to normalize.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
image = rescale(image=image, scale=1 / 127.5, data_format=data_format)
image = image - 1
return image
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_normalize: bool = None,
do_color_quantize: Optional[bool] = None,
clusters: Optional[Union[int, List[int]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image
do_color_quantize (`bool`, *optional*, defaults to `self.do_color_quantize`):
Whether to color quantize the image.
clusters (`np.ndarray`, *optional*, defaults to `self.clusters`):
Clusters used to quantize the image of shape `(n_clusters, 3)`. Only has an effect if
`do_color_quantize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Only has an effect if `do_color_quantize` is set to `False`.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_color_quantize = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
clusters = clusters if clusters is not None else self.clusters
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_color_quantize and clusters is None:
raise ValueError("Clusters must be specified if do_color_quantize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_normalize:
images = [self.normalize(image=image) for image in images]
if do_color_quantize:
images = [to_channel_dimension_format(image, ChannelDimension.LAST) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
images = np.array(images)
clusters = np.array(clusters)
images = color_quantize(images, clusters).reshape(images.shape[:-1])
# flatten to (batch_size, height*width)
batch_size = images.shape[0]
images = images.reshape(batch_size, -1)
# We need to convert back to a list of images to keep consistent behaviour across processors.
images = list(images)
else:
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"input_ids": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -992,11 +992,12 @@ class ImageGPTForCausalImageModeling(ImageGPTPreTrainedModel):
... )
>>> clusters = feature_extractor.clusters
>>> n_px = feature_extractor.size
>>> height = feature_extractor.size["height"]
>>> width = feature_extractor.size["width"]
>>> samples = output[:, 1:].cpu().detach().numpy()
>>> samples_img = [
... np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples
... np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [height, width, 3]).astype(np.uint8) for s in samples
... ] # convert color cluster tokens back to pixels
>>> f, axes = plt.subplots(1, batch_size, dpi=300)
......
......@@ -16,226 +16,10 @@
Feature extractor class for LayoutLMv2.
"""
from typing import List, Optional, Union
from ...utils import logging
from .image_processing_layoutlmv2 import LayoutLMv2ImageProcessor
import numpy as np
from PIL import Image
from transformers.image_utils import PILImageResampling
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...image_utils import ImageFeatureExtractionMixin, is_torch_tensor
from ...utils import TensorType, is_pytesseract_available, logging, requires_backends
# soft dependency
if is_pytesseract_available():
import pytesseract
logger = logging.get_logger(__name__)
ImageInput = Union[
Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"] # noqa
]
def normalize_box(box, width, height):
return [
int(1000 * (box[0] / width)),
int(1000 * (box[1] / height)),
int(1000 * (box[2] / width)),
int(1000 * (box[3] / height)),
]
def apply_tesseract(image: Image.Image, lang: Optional[str], tesseract_config: Optional[str]):
"""Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes."""
# apply OCR
data = pytesseract.image_to_data(image, lang=lang, output_type="dict", config=tesseract_config)
words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"]
# filter empty words and corresponding coordinates
irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()]
words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices]
left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices]
top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices]
width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices]
height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
actual_boxes = []
for x, y, w, h in zip(left, top, width, height):
actual_box = [x, y, x + w, y + h]
actual_boxes.append(actual_box)
image_width, image_height = image.size
# finally, normalize the bounding boxes
normalized_boxes = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(box, image_width, image_height))
assert len(words) == len(normalized_boxes), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class LayoutLMv2FeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a LayoutLMv2 feature extractor. This can be used to resize document images to the same size, as well as
to apply OCR on them in order to get a list of words and normalized bounding boxes.
This feature extractor inherits from [`~feature_extraction_utils.PreTrainedFeatureExtractor`] which contains most
of the main methods. Users should refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size (`int` or `Tuple(int)`, *optional*, defaults to 224):
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an
integer is provided, then the input will be resized to (size, size). Only has an effect if `do_resize` is
set to `True`.
resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BILINEAR`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
apply_ocr (`bool`, *optional*, defaults to `True`):
Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes.
ocr_lang (`str`, *optional*):
The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
used.
tesseract_config (`str`, *optional*):
Any additional custom configuration flags that are forwarded to the `config` parameter when calling
Tesseract. For example: '--psm 6'.
<Tip>
LayoutLMv2FeatureExtractor uses Google's Tesseract OCR engine under the hood.
</Tip>"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=224,
resample=PILImageResampling.BILINEAR,
apply_ocr=True,
ocr_lang=None,
tesseract_config="",
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.apply_ocr = apply_ocr
self.ocr_lang = ocr_lang
self.tesseract_config = tesseract_config
def __call__(
self, images: ImageInput, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
width).
- **words** -- Optional words as identified by Tesseract OCR (only when [`LayoutLMv2FeatureExtractor`] was
initialized with `apply_ocr` set to `True`).
- **boxes** -- Optional bounding boxes as identified by Tesseract OCR, normalized based on the image size
(only when [`LayoutLMv2FeatureExtractor`] was initialized with `apply_ocr` set to `True`).
Examples:
```python
>>> from transformers import LayoutLMv2FeatureExtractor
>>> from PIL import Image
>>> # Document can be a png, jpg, etc. PDFs must be converted to images.
>>> image = Image.open(name_of_your_document).convert("RGB")
>>> # option 1: with apply_ocr=True (default)
>>> feature_extractor = LayoutLMv2FeatureExtractor()
>>> encoding = feature_extractor(image, return_tensors="pt")
>>> print(encoding.keys())
>>> # dict_keys(['pixel_values', 'words', 'boxes'])
>>> # option 2: with apply_ocr=False
>>> feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False)
>>> encoding = feature_extractor(image, return_tensors="pt")
>>> print(encoding.keys())
>>> # dict_keys(['pixel_values'])
```"""
# Input type checking for clearer error
valid_images = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples), "
f"but is of type {type(images)}."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
# Tesseract OCR to get words + normalized bounding boxes
if self.apply_ocr:
requires_backends(self, "pytesseract")
words_batch = []
boxes_batch = []
for image in images:
words, boxes = apply_tesseract(self.to_pil_image(image), self.ocr_lang, self.tesseract_config)
words_batch.append(words)
boxes_batch.append(boxes)
# transformations (resizing)
if self.do_resize and self.size is not None:
images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
images = [self.to_numpy_array(image, rescale=False) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
images = [image[::-1, :, :] for image in images]
# return as BatchFeature
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
if self.apply_ocr:
encoded_inputs["words"] = words_batch
encoded_inputs["boxes"] = boxes_batch
return encoded_inputs
LayoutLMv2FeatureExtractor = LayoutLMv2ImageProcessor
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment