"test/git@developer.sourcefind.cn:change/sglang.git" did not exist on "f5b5f2bff9c492911494d6d4da96d82083fc3c96"
Unverified Commit a622705e authored by Sagor Sarker's avatar Sagor Sarker Committed by GitHub
Browse files

added multiple model_cards for below models (#6666)

* Create README.md

* Update README.md

* Create README.md

* Update README.md

* added multiple codeswitch model
parent 16e38940
...@@ -7,6 +7,7 @@ language: ...@@ -7,6 +7,7 @@ language:
# codeswitch-hineng-lid-lince # codeswitch-hineng-lid-lince
This is a pretrained model for **language identification** of `hindi-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home) This is a pretrained model for **language identification** of `hindi-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home)
## Identify Language ## Identify Language
* Method-1 * Method-1
......
---
language:
- hi
- en
---
# codeswitch-hineng-ner-lince
This is a pretrained model for **Name Entity Recognition** of `Hindi-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home)
This model is trained for this below repository.
[https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch)
To install codeswitch:
```
pip install codeswitch
```
## Identify Language
* Method-1
```py
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-hineng-ner-lince")
model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-hineng-ner-lince")
ner_model = pipeline('ner', model=model, tokenizer=tokenizer)
ner_model("put any hindi english code-mixed sentence")
```
* Method-2
```py
from codeswitch.codeswitch import NER
ner = NER('hin-eng')
text = "" # your mixed sentence
result = ner.tag(text)
print(result)
```
---
language:
- hi
- en
---
# codeswitch-hineng-pos-lince
This is a pretrained model for **Part of Speech Tagging** of `hindi-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home)
This model is trained for this below repository.
[https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch)
To install codeswitch:
```
pip install codeswitch
```
## Identify Language
* Method-1
```py
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-hineng-pos-lince")
model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-hineng-pos-lince")
pos_model = pipeline('ner', model=model, tokenizer=tokenizer)
pos_model("put any hindi english code-mixed sentence")
```
* Method-2
```py
from codeswitch.codeswitch import POS
pos = POS('hin-eng')
text = "" # your mixed sentence
result = pos.tag(text)
print(result)
```
---
language:
- ne
- en
---
# codeswitch-nepeng-lid-lince
This is a pretrained model for **language identification** of `nepali-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home).
This model is trained for this below repository.
[https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch)
To install codeswitch:
```
pip install codeswitch
```
## Identify Language
* Method-1
```py
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-nepeng-lid-lince")
model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-nepeng-lid-lince")
lid_model = pipeline('ner', model=model, tokenizer=tokenizer)
lid_model("put any nepali english code-mixed sentence")
```
* Method-2
```py
from codeswitch.codeswitch import LanguageIdentification
lid = LanguageIdentification('nep-eng')
text = "" # your code-mixed sentence
result = lid.identify(text)
print(result)
```
...@@ -7,6 +7,7 @@ language: ...@@ -7,6 +7,7 @@ language:
# codeswitch-spaeng-lid-lince # codeswitch-spaeng-lid-lince
This is a pretrained model for **language identification** of `spanish-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home) This is a pretrained model for **language identification** of `spanish-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home)
## Identify Language ## Identify Language
* Method-1 * Method-1
......
---
language:
- es
- en
---
# codeswitch-spaeng-ner-lince
This is a pretrained model for **Name Entity Recognition** of `spanish-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home)
This model is trained for this below repository.
[https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch)
To install codeswitch:
```
pip install codeswitch
```
## Identify Language
* Method-1
```py
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-spaeng-ner-lince")
model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-spaeng-ner-lince")
ner_model = pipeline('ner', model=model, tokenizer=tokenizer)
ner_model("put any spanish english code-mixed sentence")
```
* Method-2
```py
from codeswitch.codeswitch import NER
ner = NER('spa-eng')
text = "" # your mixed sentence
result = ner.tag(text)
print(result)
```
---
language:
- es
- en
---
# codeswitch-spaeng-pos-lince
This is a pretrained model for **Part of Speech Tagging** of `spanish-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home)
This model is trained for this below repository.
[https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch)
To install codeswitch:
```
pip install codeswitch
```
## Identify Language
* Method-1
```py
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-spaeng-pos-lince")
model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-spaeng-pos-lince")
pos_model = pipeline('ner', model=model, tokenizer=tokenizer)
pos_model("put any spanish english code-mixed sentence")
```
* Method-2
```py
from codeswitch.codeswitch import POS
pos = POS('spa-eng')
text = "" # your mixed sentence
result = pos.tag(text)
print(result)
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment