Unverified Commit a564d10a authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Deprecate low use models (#30781)

* Deprecate models
- graphormer
- time_series_transformer
- xlm_prophetnet
- qdqbert
- nat
- ernie_m
- tvlt
- nezha
- mega
- jukebox
- vit_hybrid
- x_clip
- deta
- speech_to_text_2
- efficientformer
- realm
- gptsan_japanese

* Fix up

* Fix speech2text2 imports

* Make sure message isn't indented

* Fix docstrings

* Correctly map for deprecated models from model_type

* Uncomment out

* Add back time series transformer and x-clip

* Import fix and fix-up

* Fix up with updated ruff
parent 7f08817b
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {"configuration_vit_hybrid": ["ViTHybridConfig"]} _import_structure = {"configuration_vit_hybrid": ["ViTHybridConfig"]}
......
...@@ -14,10 +14,10 @@ ...@@ -14,10 +14,10 @@
# limitations under the License. # limitations under the License.
"""ViT Hybrid model configuration""" """ViT Hybrid model configuration"""
from ...configuration_utils import PretrainedConfig from ....configuration_utils import PretrainedConfig
from ...utils import logging from ....utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING from ...auto.configuration_auto import CONFIG_MAPPING
from ..bit import BitConfig from ...bit import BitConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -18,14 +18,14 @@ from typing import Dict, List, Optional, Union ...@@ -18,14 +18,14 @@ from typing import Dict, List, Optional, Union
import numpy as np import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ....image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import ( from ....image_transforms import (
convert_to_rgb, convert_to_rgb,
get_resize_output_image_size, get_resize_output_image_size,
resize, resize,
to_channel_dimension_format, to_channel_dimension_format,
) )
from ...image_utils import ( from ....image_utils import (
OPENAI_CLIP_MEAN, OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD, OPENAI_CLIP_STD,
ChannelDimension, ChannelDimension,
...@@ -39,7 +39,7 @@ from ...image_utils import ( ...@@ -39,7 +39,7 @@ from ...image_utils import (
validate_kwargs, validate_kwargs,
validate_preprocess_arguments, validate_preprocess_arguments,
) )
from ...utils import TensorType, is_vision_available, logging from ....utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -23,12 +23,12 @@ import torch.utils.checkpoint ...@@ -23,12 +23,12 @@ import torch.utils.checkpoint
from torch import nn from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN from ....activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ....modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel from ....modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ....pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from ....utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from ...utils.backbone_utils import load_backbone from ....utils.backbone_utils import load_backbone
from .configuration_vit_hybrid import ViTHybridConfig from .configuration_vit_hybrid import ViTHybridConfig
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
_import_structure = { _import_structure = {
......
...@@ -16,8 +16,8 @@ ...@@ -16,8 +16,8 @@
from typing import Callable, Optional, Union from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig from ....configuration_utils import PretrainedConfig
from ...utils import logging from ....utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -25,10 +25,10 @@ import torch.utils.checkpoint ...@@ -25,10 +25,10 @@ import torch.utils.checkpoint
from torch import Tensor, nn from torch import Tensor, nn
from torch.nn import LayerNorm from torch.nn import LayerNorm
from ...activations import ACT2FN from ....activations import ACT2FN
from ...modeling_outputs import BaseModelOutput from ....modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel from ....modeling_utils import PreTrainedModel
from ...utils import ( from ....utils import (
ModelOutput, ModelOutput,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
......
...@@ -18,8 +18,8 @@ import os ...@@ -18,8 +18,8 @@ import os
from shutil import copyfile from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer from ....tokenization_utils import PreTrainedTokenizer
from ...utils import logging from ....utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -71,7 +71,6 @@ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" ...@@ -71,7 +71,6 @@ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
@dataclass @dataclass
# Copied from transformers.models.nat.modeling_nat.NatEncoderOutput with Nat->Dinat
class DinatEncoderOutput(ModelOutput): class DinatEncoderOutput(ModelOutput):
""" """
Dinat encoder's outputs, with potential hidden states and attentions. Dinat encoder's outputs, with potential hidden states and attentions.
...@@ -105,7 +104,6 @@ class DinatEncoderOutput(ModelOutput): ...@@ -105,7 +104,6 @@ class DinatEncoderOutput(ModelOutput):
@dataclass @dataclass
# Copied from transformers.models.nat.modeling_nat.NatModelOutput with Nat->Dinat
class DinatModelOutput(ModelOutput): class DinatModelOutput(ModelOutput):
""" """
Dinat model's outputs that also contains a pooling of the last hidden states. Dinat model's outputs that also contains a pooling of the last hidden states.
...@@ -142,7 +140,6 @@ class DinatModelOutput(ModelOutput): ...@@ -142,7 +140,6 @@ class DinatModelOutput(ModelOutput):
@dataclass @dataclass
# Copied from transformers.models.nat.modeling_nat.NatImageClassifierOutput with Nat->Dinat
class DinatImageClassifierOutput(ModelOutput): class DinatImageClassifierOutput(ModelOutput):
""" """
Dinat outputs for image classification. Dinat outputs for image classification.
...@@ -178,7 +175,6 @@ class DinatImageClassifierOutput(ModelOutput): ...@@ -178,7 +175,6 @@ class DinatImageClassifierOutput(ModelOutput):
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
# Copied from transformers.models.nat.modeling_nat.NatEmbeddings with Nat->Dinat
class DinatEmbeddings(nn.Module): class DinatEmbeddings(nn.Module):
""" """
Construct the patch and position embeddings. Construct the patch and position embeddings.
...@@ -201,7 +197,6 @@ class DinatEmbeddings(nn.Module): ...@@ -201,7 +197,6 @@ class DinatEmbeddings(nn.Module):
return embeddings return embeddings
# Copied from transformers.models.nat.modeling_nat.NatPatchEmbeddings with Nat->Dinat
class DinatPatchEmbeddings(nn.Module): class DinatPatchEmbeddings(nn.Module):
""" """
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
...@@ -238,7 +233,6 @@ class DinatPatchEmbeddings(nn.Module): ...@@ -238,7 +233,6 @@ class DinatPatchEmbeddings(nn.Module):
return embeddings return embeddings
# Copied from transformers.models.nat.modeling_nat.NatDownsampler with Nat->Dinat
class DinatDownsampler(nn.Module): class DinatDownsampler(nn.Module):
""" """
Convolutional Downsampling Layer. Convolutional Downsampling Layer.
...@@ -321,7 +315,6 @@ class NeighborhoodAttention(nn.Module): ...@@ -321,7 +315,6 @@ class NeighborhoodAttention(nn.Module):
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttention.transpose_for_scores with Nat->Dinat
def transpose_for_scores(self, x): def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape) x = x.view(new_x_shape)
...@@ -361,7 +354,6 @@ class NeighborhoodAttention(nn.Module): ...@@ -361,7 +354,6 @@ class NeighborhoodAttention(nn.Module):
return outputs return outputs
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionOutput
class NeighborhoodAttentionOutput(nn.Module): class NeighborhoodAttentionOutput(nn.Module):
def __init__(self, config, dim): def __init__(self, config, dim):
super().__init__() super().__init__()
...@@ -382,7 +374,6 @@ class NeighborhoodAttentionModule(nn.Module): ...@@ -382,7 +374,6 @@ class NeighborhoodAttentionModule(nn.Module):
self.output = NeighborhoodAttentionOutput(config, dim) self.output = NeighborhoodAttentionOutput(config, dim)
self.pruned_heads = set() self.pruned_heads = set()
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionModule.prune_heads
def prune_heads(self, heads): def prune_heads(self, heads):
if len(heads) == 0: if len(heads) == 0:
return return
...@@ -401,7 +392,6 @@ class NeighborhoodAttentionModule(nn.Module): ...@@ -401,7 +392,6 @@ class NeighborhoodAttentionModule(nn.Module):
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads) self.pruned_heads = self.pruned_heads.union(heads)
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionModule.forward
def forward( def forward(
self, self,
hidden_states: torch.Tensor, hidden_states: torch.Tensor,
...@@ -413,7 +403,6 @@ class NeighborhoodAttentionModule(nn.Module): ...@@ -413,7 +403,6 @@ class NeighborhoodAttentionModule(nn.Module):
return outputs return outputs
# Copied from transformers.models.nat.modeling_nat.NatIntermediate with Nat->Dinat
class DinatIntermediate(nn.Module): class DinatIntermediate(nn.Module):
def __init__(self, config, dim): def __init__(self, config, dim):
super().__init__() super().__init__()
...@@ -429,7 +418,6 @@ class DinatIntermediate(nn.Module): ...@@ -429,7 +418,6 @@ class DinatIntermediate(nn.Module):
return hidden_states return hidden_states
# Copied from transformers.models.nat.modeling_nat.NatOutput with Nat->Dinat
class DinatOutput(nn.Module): class DinatOutput(nn.Module):
def __init__(self, config, dim): def __init__(self, config, dim):
super().__init__() super().__init__()
...@@ -539,7 +527,6 @@ class DinatStage(nn.Module): ...@@ -539,7 +527,6 @@ class DinatStage(nn.Module):
self.pointing = False self.pointing = False
# Copied from transformers.models.nat.modeling_nat.NatStage.forward
def forward( def forward(
self, self,
hidden_states: torch.Tensor, hidden_states: torch.Tensor,
...@@ -582,7 +569,6 @@ class DinatEncoder(nn.Module): ...@@ -582,7 +569,6 @@ class DinatEncoder(nn.Module):
] ]
) )
# Copied from transformers.models.nat.modeling_nat.NatEncoder.forward with Nat->Dinat
def forward( def forward(
self, self,
hidden_states: torch.Tensor, hidden_states: torch.Tensor,
...@@ -687,7 +673,6 @@ DINAT_INPUTS_DOCSTRING = r""" ...@@ -687,7 +673,6 @@ DINAT_INPUTS_DOCSTRING = r"""
"The bare Dinat Model transformer outputting raw hidden-states without any specific head on top.", "The bare Dinat Model transformer outputting raw hidden-states without any specific head on top.",
DINAT_START_DOCSTRING, DINAT_START_DOCSTRING,
) )
# Copied from transformers.models.nat.modeling_nat.NatModel with Nat->Dinat, NAT->DINAT
class DinatModel(DinatPreTrainedModel): class DinatModel(DinatPreTrainedModel):
def __init__(self, config, add_pooling_layer=True): def __init__(self, config, add_pooling_layer=True):
super().__init__(config) super().__init__(config)
......
This diff is collapsed.
...@@ -72,6 +72,13 @@ class ErnieMTokenizer(metaclass=DummyObject): ...@@ -72,6 +72,13 @@ class ErnieMTokenizer(metaclass=DummyObject):
requires_backends(self, ["sentencepiece"]) requires_backends(self, ["sentencepiece"])
class XLMProphetNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class FNetTokenizer(metaclass=DummyObject): class FNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"] _backends = ["sentencepiece"]
...@@ -233,13 +240,6 @@ class XGLMTokenizer(metaclass=DummyObject): ...@@ -233,13 +240,6 @@ class XGLMTokenizer(metaclass=DummyObject):
requires_backends(self, ["sentencepiece"]) requires_backends(self, ["sentencepiece"])
class XLMProphetNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class XLMRobertaTokenizer(metaclass=DummyObject): class XLMRobertaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"] _backends = ["sentencepiece"]
......
...@@ -1038,168 +1038,168 @@ class TFDeiTPreTrainedModel(metaclass=DummyObject): ...@@ -1038,168 +1038,168 @@ class TFDeiTPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFAdaptiveEmbedding(metaclass=DummyObject): class TFEfficientFormerForImageClassification(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFTransfoXLForSequenceClassification(metaclass=DummyObject): class TFEfficientFormerForImageClassificationWithTeacher(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFTransfoXLLMHeadModel(metaclass=DummyObject): class TFEfficientFormerModel(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFTransfoXLMainLayer(metaclass=DummyObject): class TFEfficientFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFTransfoXLModel(metaclass=DummyObject): class TFAdaptiveEmbedding(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFTransfoXLPreTrainedModel(metaclass=DummyObject): class TFTransfoXLForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDistilBertForMaskedLM(metaclass=DummyObject): class TFTransfoXLLMHeadModel(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDistilBertForMultipleChoice(metaclass=DummyObject): class TFTransfoXLMainLayer(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDistilBertForQuestionAnswering(metaclass=DummyObject): class TFTransfoXLModel(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDistilBertForSequenceClassification(metaclass=DummyObject): class TFTransfoXLPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDistilBertForTokenClassification(metaclass=DummyObject): class TFDistilBertForMaskedLM(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDistilBertMainLayer(metaclass=DummyObject): class TFDistilBertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDistilBertModel(metaclass=DummyObject): class TFDistilBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDistilBertPreTrainedModel(metaclass=DummyObject): class TFDistilBertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDPRContextEncoder(metaclass=DummyObject): class TFDistilBertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDPRPretrainedContextEncoder(metaclass=DummyObject): class TFDistilBertMainLayer(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDPRPretrainedQuestionEncoder(metaclass=DummyObject): class TFDistilBertModel(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDPRPretrainedReader(metaclass=DummyObject): class TFDistilBertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDPRQuestionEncoder(metaclass=DummyObject): class TFDPRContextEncoder(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFDPRReader(metaclass=DummyObject): class TFDPRPretrainedContextEncoder(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFEfficientFormerForImageClassification(metaclass=DummyObject): class TFDPRPretrainedQuestionEncoder(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFEfficientFormerForImageClassificationWithTeacher(metaclass=DummyObject): class TFDPRPretrainedReader(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFEfficientFormerModel(metaclass=DummyObject): class TFDPRQuestionEncoder(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFEfficientFormerPreTrainedModel(metaclass=DummyObject): class TFDPRReader(metaclass=DummyObject):
_backends = ["tf"] _backends = ["tf"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
......
...@@ -121,6 +121,13 @@ class DebertaV2TokenizerFast(metaclass=DummyObject): ...@@ -121,6 +121,13 @@ class DebertaV2TokenizerFast(metaclass=DummyObject):
requires_backends(self, ["tokenizers"]) requires_backends(self, ["tokenizers"])
class RealmTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class RetriBertTokenizerFast(metaclass=DummyObject): class RetriBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"] _backends = ["tokenizers"]
...@@ -352,13 +359,6 @@ class Qwen2TokenizerFast(metaclass=DummyObject): ...@@ -352,13 +359,6 @@ class Qwen2TokenizerFast(metaclass=DummyObject):
requires_backends(self, ["tokenizers"]) requires_backends(self, ["tokenizers"])
class RealmTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class ReformerTokenizerFast(metaclass=DummyObject): class ReformerTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"] _backends = ["tokenizers"]
......
...@@ -142,49 +142,63 @@ class DetaImageProcessor(metaclass=DummyObject): ...@@ -142,49 +142,63 @@ class DetaImageProcessor(metaclass=DummyObject):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class DetrFeatureExtractor(metaclass=DummyObject): class EfficientFormerImageProcessor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class DetrImageProcessor(metaclass=DummyObject): class TvltImageProcessor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class DonutFeatureExtractor(metaclass=DummyObject): class ViTHybridImageProcessor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class DonutImageProcessor(metaclass=DummyObject): class DetrFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class DPTFeatureExtractor(metaclass=DummyObject): class DetrImageProcessor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class DPTImageProcessor(metaclass=DummyObject): class DonutFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class EfficientFormerImageProcessor(metaclass=DummyObject): class DonutImageProcessor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class DPTFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class DPTImageProcessor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
...@@ -520,13 +534,6 @@ class Swin2SRImageProcessor(metaclass=DummyObject): ...@@ -520,13 +534,6 @@ class Swin2SRImageProcessor(metaclass=DummyObject):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class TvltImageProcessor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class TvpImageProcessor(metaclass=DummyObject): class TvpImageProcessor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
...@@ -590,13 +597,6 @@ class ViTImageProcessor(metaclass=DummyObject): ...@@ -590,13 +597,6 @@ class ViTImageProcessor(metaclass=DummyObject):
requires_backends(self, ["vision"]) requires_backends(self, ["vision"])
class ViTHybridImageProcessor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class VitMatteImageProcessor(metaclass=DummyObject): class VitMatteImageProcessor(metaclass=DummyObject):
_backends = ["vision"] _backends = ["vision"]
......
This diff is collapsed.
This diff is collapsed.
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import ViTImageProcessor
class EfficientFormerImageProcessorTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=13,
num_channels=3,
image_size=224,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
):
size = size if size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.size["height"], self.size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class EfficientFormerImageProcessorTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = ViTImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = EfficientFormerImageProcessorTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_proc_properties(self):
image_processor = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processor, "image_mean"))
self.assertTrue(hasattr(image_processor, "image_std"))
self.assertTrue(hasattr(image_processor, "do_normalize"))
self.assertTrue(hasattr(image_processor, "do_resize"))
self.assertTrue(hasattr(image_processor, "size"))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment