Unverified Commit a3fef89b authored by Arthur's avatar Arthur Committed by GitHub
Browse files

[GPT2] Propose fix for #21080 (#21853)

* Make sure position ids are masked

* test that padded input produce the same results

* fix failing tests

* fixup

* fix batch test
parent eee195b3
......@@ -553,7 +553,14 @@ class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel):
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_length > 0:
position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
elif position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
......
......@@ -797,7 +797,14 @@ class GPT2Model(GPT2PreTrainedModel):
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_length > 0:
position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
elif position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
......
......@@ -590,6 +590,27 @@ class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
self.assertTrue(batch_out_sentence_tt != batch_out_sentence) # token_type_ids should change output
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
@slow
def test_batch_forward(self):
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.padding_side = "left"
# This tokenizer has no pad token, so we have to set it in some way
# Define PAD Token = EOS Token = 50256
tokenizer.pad_token = tokenizer.eos_token
model = GPT2LMHeadModel.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id)
sentences = ["Hello, my dog is a little bit of a mess. I'm not sure if he's"]
inputs = tokenizer(sentences, padding=True, return_tensors="pt")
logits = model(**inputs).logits[:, -1, :]
indexes = torch.argmax(logits).item()
inputs_padded = tokenizer(sentences, padding="max_length", max_length=30, return_tensors="pt")
logits_padded = model(**inputs_padded).logits[:, -1, :]
indexes_padded = torch.argmax(logits_padded).item()
self.assertTrue(indexes == indexes_padded)
@slow
def test_batch_generation_2heads(self):
model = GPT2DoubleHeadsModel.from_pretrained("gpt2")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment