Unverified Commit a36f981d authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into fix-ctrl-past

parents 151e4ab4 5afca00b
......@@ -5,8 +5,12 @@ function deploy_doc(){
git checkout $1
if [ ! -z "$2" ]
then
echo "Pushing version" $2
make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html $doc:$dir/$2
if [ -d "$dir/$2" ]; then
echo "Directory" $2 "already exists"
else
echo "Pushing version" $2
make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html $doc:$dir/$2
fi
else
echo "Pushing master"
make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html/* $doc:$dir
......@@ -19,3 +23,4 @@ deploy_doc "fe02e45" v1.1.0
deploy_doc "89fd345" v1.2.0
deploy_doc "fc9faa8" v2.0.0
deploy_doc "3ddce1d" v2.1.1
deploy_doc "3616209" v2.2.0
......@@ -17,6 +17,7 @@ assignees: ''
* [ ] the model implementation is available: (give details)
* [ ] the model weights are available: (give details)
* [ ] who are the authors: (mention them)
## Additional context
......
......@@ -137,4 +137,5 @@ examples/runs
serialization_dir
# emacs
*.*~
\ No newline at end of file
*.*~
debug.env
......@@ -106,7 +106,7 @@ Follow these steps to start contributing:
```bash
$ git clone git@github.com:<your Github handle>/transformers.git
$ cd transformers
$ git remote add upstream git@github.com:huggingface/transformers.git
$ git remote add upstream https://github.com/huggingface/transformers.git
```
3. Create a new branch to hold your development changes:
......
......@@ -58,7 +58,7 @@ Choose the right framework for every part of a model's lifetime
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
| [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-transformers-to-transformers) | Migrating your code from pytorch-transformers to transformers |
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
| [Documentation](https://huggingface.co/transformers/) [(v2.1.1)](https://huggingface.co/transformers/v2.1.1) [(v2.0.0)](https://huggingface.co/transformers/v2.0.0) [(v1.2.0)](https://huggingface.co/transformers/v1.2.0) [(v1.1.0)](https://huggingface.co/transformers/v1.1.0) [(v1.0.0)](https://huggingface.co/transformers/v1.0.0) | Full API documentation and more |
| [Documentation][(v2.2.0)](https://huggingface.co/transformers/v2.2.0) [(v2.1.1)](https://huggingface.co/transformers/v2.1.1) [(v2.0.0)](https://huggingface.co/transformers/v2.0.0) [(v1.2.0)](https://huggingface.co/transformers/v1.2.0) [(v1.1.0)](https://huggingface.co/transformers/v1.1.0) [(v1.0.0)](https://huggingface.co/transformers/v1.0.0) [(master)](https://huggingface.co/transformers) | Full API documentation and more |
## Installation
......@@ -86,6 +86,17 @@ When TensorFlow 2.0 and/or PyTorch has been installed, you can install from sour
pip install [--editable] .
```
### Run the examples
Examples are included in the repository but are not shipped with the library.
Therefore, in order to run the latest versions of the examples you also need to install from source. To do so, create a new virtual environment and follow these steps:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
pip install [--editable] .
```
### Tests
A series of tests are included for the library and the example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
......@@ -122,7 +133,9 @@ At some point in the future, you'll be able to seamlessly move from pre-training
7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
8. **[DistilBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation).
9. **[CTRL](https://github.com/salesforce/ctrl/)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
10. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
10. **[CamemBERT](https://camembert-model.fr)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
11. **[ALBERT](https://github.com/google-research/google-research/tree/master/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
11. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).
......@@ -171,8 +184,7 @@ for model_class, tokenizer_class, pretrained_weights in MODELS:
# Each architecture is provided with several class for fine-tuning on down-stream tasks, e.g.
BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification,
BertForQuestionAnswering]
BertForSequenceClassification, BertForTokenClassification, BertForQuestionAnswering]
# All the classes for an architecture can be initiated from pretrained weights for this architecture
# Note that additional weights added for fine-tuning are only initialized
......@@ -253,6 +265,11 @@ print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sen
## Quick tour of the fine-tuning/usage scripts
**Important**
Before running the fine-tuning scripts, please read the
[instructions](#run-the-examples) on how to
setup your environment to run the examples.
The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
- `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
......@@ -521,12 +538,12 @@ Here is a conversion examples from `BertAdam` with a linear warmup and decay sch
# Parameters:
lr = 1e-3
max_grad_norm = 1.0
num_total_steps = 1000
num_training_steps = 1000
num_warmup_steps = 100
warmup_proportion = float(num_warmup_steps) / float(num_total_steps) # 0.1
warmup_proportion = float(num_warmup_steps) / float(num_training_steps) # 0.1
### Previously BertAdam optimizer was instantiated like this:
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_total_steps)
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_training_steps)
### and used like this:
for batch in train_data:
loss = model(batch)
......@@ -535,7 +552,7 @@ for batch in train_data:
### In Transformers, optimizer and schedules are splitted and instantiated like this:
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_warmup_steps, t_total=num_total_steps) # PyTorch scheduler
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps) # PyTorch scheduler
### and used like this:
for batch in train_data:
model.train()
......
cd docs
function deploy_doc(){
echo "Creating doc at commit $1 and pushing to folder $2"
git checkout $1
if [ ! -z "$2" ]
then
echo "Pushing version" $2
make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html $doc:$dir/$2
else
echo "Pushing master"
make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html/* $doc:$dir
fi
}
deploy_doc "master"
deploy_doc "b33a385" v1.0.0
deploy_doc "fe02e45" v1.1.0
deploy_doc "89fd345" v1.2.0
deploy_doc "fc9faa8" v2.0.0
deploy_doc "3ddce1d" v2.1.1
deploy_doc "f2f3294" v2.2.0
\ No newline at end of file
function addIcon() {
const huggingFaceLogo = "https://huggingface.co/assets/transformers-docs/huggingface_logo.svg";
const huggingFaceLogo = "https://huggingface.co/landing/assets/transformers-docs/huggingface_logo.svg";
const image = document.createElement("img");
image.setAttribute("src", huggingFaceLogo);
......@@ -24,10 +24,10 @@ function addCustomFooter() {
social.classList.add("footer__Social");
const imageDetails = [
{ link: "https://huggingface.co", imageLink: "https://huggingface.co/assets/transformers-docs/website.svg" },
{ link: "https://twitter.com/huggingface", imageLink: "https://huggingface.co/assets/transformers-docs/twitter.svg" },
{ link: "https://github.com/huggingface", imageLink: "https://huggingface.co/assets/transformers-docs/github.svg" },
{ link: "https://www.linkedin.com/company/huggingface/", imageLink: "https://huggingface.co/assets/transformers-docs/linkedin.svg" }
{ link: "https://huggingface.co", imageLink: "https://huggingface.co/landing/assets/transformers-docs/website.svg" },
{ link: "https://twitter.com/huggingface", imageLink: "https://huggingface.co/landing/assets/transformers-docs/twitter.svg" },
{ link: "https://github.com/huggingface", imageLink: "https://huggingface.co/landing/assets/transformers-docs/github.svg" },
{ link: "https://www.linkedin.com/company/huggingface/", imageLink: "https://huggingface.co/landing/assets/transformers-docs/linkedin.svg" }
];
imageDetails.forEach(imageLinks => {
......
......@@ -26,7 +26,7 @@ author = u'huggingface'
# The short X.Y version
version = u''
# The full version, including alpha/beta/rc tags
release = u'2.1.1'
release = u'2.2.0'
# -- General configuration ---------------------------------------------------
......
......@@ -47,6 +47,9 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train
6. `XLM <https://github.com/facebookresearch/XLM>`_ (from Facebook) released together with the paper `Cross-lingual Language Model Pretraining <https://arxiv.org/abs/1901.07291>`_ by Guillaume Lample and Alexis Conneau.
7. `RoBERTa <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`_ (from Facebook), released together with the paper a `Robustly Optimized BERT Pretraining Approach <https://arxiv.org/abs/1907.11692>`_ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
8. `DistilBERT <https://huggingface.co/transformers/model_doc/distilbert.html>`_ (from HuggingFace) released together with the paper `DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`_ by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into `DistilGPT2 <https://github.com/huggingface/transformers/tree/master/examples/distillation>`_.
9. `CTRL <https://github.com/pytorch/fairseq/tree/master/examples/ctrl>`_ (from Salesforce), released together with the paper `CTRL: A Conditional Transformer Language Model for Controllable Generation <https://www.github.com/salesforce/ctrl>`_ by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
10. `CamemBERT <https://huggingface.co/transformers/model_doc/camembert.html>`_ (from FAIR, Inria, Sorbonne Université) released together with the paper `CamemBERT: a Tasty French Language Model <https://arxiv.org/abs/1911.03894>`_ by Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary, Eric Villemonte de la Clergerie, Djame Seddah, and Benoît Sagot.
11. `ALBERT <https://github.com/pytorch/fairseq/tree/master/examples/albert>`_ (from Google Research), released together with the paper a `ALBERT: A Lite BERT for Self-supervised Learning of Language Representations <https://arxiv.org/abs/1909.11942>`_ by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
.. toctree::
:maxdepth: 2
......@@ -89,3 +92,5 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train
model_doc/roberta
model_doc/distilbert
model_doc/ctrl
model_doc/camembert
model_doc/albert
......@@ -18,19 +18,17 @@ Schedules
Learning Rate Schedules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: transformers.ConstantLRSchedule
:members:
.. autofunction:: transformers.get_constant_schedule
.. autoclass:: transformers.WarmupConstantSchedule
:members:
.. autofunction:: transformers.get_constant_schedule_with_warmup
.. image:: /imgs/warmup_constant_schedule.png
:target: /imgs/warmup_constant_schedule.png
:alt:
.. autoclass:: transformers.WarmupCosineSchedule
.. autofunction:: transformers.get_cosine_schedule_with_warmup
:members:
.. image:: /imgs/warmup_cosine_schedule.png
......@@ -38,8 +36,7 @@ Learning Rate Schedules
:alt:
.. autoclass:: transformers.WarmupCosineWithHardRestartsSchedule
:members:
.. autofunction:: transformers.get_cosine_with_hard_restarts_schedule_with_warmup
.. image:: /imgs/warmup_cosine_hard_restarts_schedule.png
:target: /imgs/warmup_cosine_hard_restarts_schedule.png
......@@ -47,8 +44,7 @@ Learning Rate Schedules
.. autoclass:: transformers.WarmupLinearSchedule
:members:
.. autofunction:: transformers.get_linear_schedule_with_warmup
.. image:: /imgs/warmup_linear_schedule.png
:target: /imgs/warmup_linear_schedule.png
......
......@@ -55,4 +55,27 @@ Example usage
^^^^^^^^^^^^^^^^^^^^^^^^^
An example using these processors is given in the
`run_glue.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py>`__ script.
\ No newline at end of file
`run_glue.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py>`__ script.
XNLI
~~~~~~~~~~~~~~~~~~~~~
`The Cross-Lingual NLI Corpus (XNLI) <https://www.nyu.edu/projects/bowman/xnli/>`__ is a benchmark that evaluates
the quality of cross-lingual text representations.
XNLI is crowd-sourced dataset based on `MultiNLI <http://www.nyu.edu/projects/bowman/multinli/>`: pairs of text are labeled with textual entailment
annotations for 15 different languages (including both high-ressource language such as English and low-ressource languages such as Swahili).
It was released together with the paper
`XNLI: Evaluating Cross-lingual Sentence Representations <https://arxiv.org/abs/1809.05053>`__
This library hosts the processor to load the XNLI data:
- :class:`~transformers.data.processors.utils.XnliProcessor`
Please note that since the gold labels are available on the test set, evaluation is performed on the test set.
Example usage
^^^^^^^^^^^^^^^^^^^^^^^^^
An example using these processors is given in the
`run_xnli.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_xnli.py>`__ script.
\ No newline at end of file
......@@ -84,12 +84,12 @@ Here is a conversion examples from `BertAdam` with a linear warmup and decay sch
# Parameters:
lr = 1e-3
max_grad_norm = 1.0
num_total_steps = 1000
num_training_steps = 1000
num_warmup_steps = 100
warmup_proportion = float(num_warmup_steps) / float(num_total_steps) # 0.1
warmup_proportion = float(num_warmup_steps) / float(num_training_steps) # 0.1
### Previously BertAdam optimizer was instantiated like this:
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_total_steps)
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, num_training_steps=num_training_steps)
### and used like this:
for batch in train_data:
loss = model(batch)
......@@ -98,7 +98,7 @@ for batch in train_data:
### In Transformers, optimizer and schedules are splitted and instantiated like this:
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_warmup_steps, t_total=num_total_steps) # PyTorch scheduler
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps) # PyTorch scheduler
### and used like this:
for batch in train_data:
loss = model(batch)
......
ALBERT
----------------------------------------------------
``AlbrtConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AlbertConfig
:members:
``AlbertTokenizer``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AlbertTokenizer
:members:
``AlbertModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AlbertModel
:members:
``AlbertForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AlbertForMaskedLM
:members:
``AlbertForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AlbertForSequenceClassification
:members:
``AlbertForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AlbertForQuestionAnswering
:members:
``TFAlbertModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFAlbertModel
:members:
``TFAlbertForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFAlbertForMaskedLM
:members:
``TFAlbertForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFAlbertForSequenceClassification
:members:
CamemBERT
----------------------------------------------------
``CamembertConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CamembertConfig
:members:
``CamembertTokenizer``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CamembertTokenizer
:members:
``CamembertModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CamembertModel
:members:
``CamembertForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CamembertForMaskedLM
:members:
``CamembertForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CamembertForSequenceClassification
:members:
``CamembertForMultipleChoice``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CamembertForMultipleChoice
:members:
``CamembertForTokenClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CamembertForTokenClassification
:members:
......@@ -73,6 +73,9 @@ Here is the full list of the currently provided pretrained models together with
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``gpt2-large`` | | 36-layer, 1280-hidden, 20-heads, 774M parameters. |
| | | | OpenAI's Large-sized GPT-2 English model |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``gpt2-xl`` | | 48-layer, 1600-hidden, 25-heads, 1558M parameters. |
| | | | OpenAI's XL-sized GPT-2 English model |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Transformer-XL | ``transfo-xl-wt103`` | | 18-layer, 1024-hidden, 16-heads, 257M parameters. |
| | | | English model trained on wikitext-103 |
......@@ -124,6 +127,14 @@ Here is the full list of the currently provided pretrained models together with
| | ``roberta-large-mnli`` | | 24-layer, 1024-hidden, 16-heads, 355M parameters |
| | | | ``roberta-large`` fine-tuned on `MNLI <http://www.nyu.edu/projects/bowman/multinli/>`__. |
| | | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``roberta-base-openai-detector`` | | 12-layer, 768-hidden, 12-heads, 125M parameters |
| | | | ``roberta-base`` fine-tuned by OpenAI on the outputs of the 1.5B-parameter GPT-2 model. |
| | | (see `details <https://github.com/openai/gpt-2-output-dataset/tree/master/detector>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``roberta-large-openai-detector`` | | 24-layer, 1024-hidden, 16-heads, 355M parameters |
| | | | ``roberta-large`` fine-tuned by OpenAI on the outputs of the 1.5B-parameter GPT-2 model. |
| | | (see `details <https://github.com/openai/gpt-2-output-dataset/tree/master/detector>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| DistilBERT | ``distilbert-base-uncased`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint |
......@@ -144,5 +155,42 @@ Here is the full list of the currently provided pretrained models together with
| CTRL | ``ctrl`` | | 48-layer, 1280-hidden, 16-heads, 1.6B parameters |
| | | | Salesforce's Large-sized CTRL English model |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| CamemBERT | ``camembert-base`` | | 12-layer, 768-hidden, 12-heads, 110M parameters |
| | | | CamemBERT using the BERT-base architecture |
| | | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/camembert>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| ALBERT | ``albert-base-v1`` | | 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters |
| | | | ALBERT base model |
| | | (see `details <https://github.com/google-research/google-research/tree/master/albert>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``albert-large-v1`` | | 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 17M parameters |
| | | | ALBERT large model |
| | | (see `details <https://github.com/google-research/google-research/tree/master/albert>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``albert-xlarge-v1`` | | 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 58M parameters |
| | | | ALBERT xlarge model |
| | | (see `details <https://github.com/google-research/google-research/tree/master/albert>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``albert-xxlarge-v1`` | | 12 repeating layer, 128 embedding, 4096-hidden, 64-heads, 223M parameters |
| | | | ALBERT xxlarge model |
| | | (see `details <https://github.com/google-research/google-research/tree/master/albert>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``albert-base-v2`` | | 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters |
| | | | ALBERT base model with no dropout, additional training data and longer training |
| | | (see `details <https://github.com/google-research/google-research/tree/master/albert>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``albert-large-v2`` | | 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 17M parameters |
| | | | ALBERT large model with no dropout, additional training data and longer training |
| | | (see `details <https://github.com/google-research/google-research/tree/master/albert>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``albert-xlarge-v2`` | | 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 58M parameters |
| | | | ALBERT xlarge model with no dropout, additional training data and longer training |
| | | (see `details <https://github.com/google-research/google-research/tree/master/albert>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``albert-xxlarge-v2`` | | 12 repeating layer, 128 embedding, 4096-hidden, 64-heads, 223M parameters |
| | | | ALBERT xxlarge model with no dropout, additional training data and longer training |
| | | (see `details <https://github.com/google-research/google-research/tree/master/albert>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
.. <https://huggingface.co/transformers/examples.html>`__
\ No newline at end of file
.. <https://huggingface.co/transformers/examples.html>`__
......@@ -188,3 +188,35 @@ assert predicted_text == 'Who was Jim Henson? Jim Henson was a man'
```
Examples for each model class of each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [documentation](#documentation).
#### Using the past
GPT-2 as well as some other models (GPT, XLNet, Transfo-XL, CTRL) make use of a `past` or `mems` attribute which can be used to prevent re-computing the key/value pairs when using sequential decoding. It is useful when generating sequences as a big part of the attention mechanism benefits from previous computations.
Here is a fully-working example using the `past` with `GPT2LMHeadModel` and argmax decoding (which should only be used as an example, as argmax decoding introduces a lot of repetition):
```python
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained('gpt2')
generated = tokenizer.encode("The Manhattan bridge")
context = torch.tensor([generated])
past = None
for i in range(100):
print(i)
output, past = model(context, past=past)
token = torch.argmax(output[0, :])
generated += [token.tolist()]
context = token.unsqueeze(0)
sequence = tokenizer.decode(generated)
print(sequence)
```
The model only requires a single token as input as all the previous tokens' key/value pairs are contained in the `past`.
\ No newline at end of file
......@@ -106,7 +106,7 @@ This section explain how you can save and re-load a fine-tuned model (BERT, GPT,
There are three types of files you need to save to be able to reload a fine-tuned model:
* the model it-self which should be saved following PyTorch serialization `best practices <https://pytorch.org/docs/stable/notes/serialization.html#best-practices>`__\ ,
* the model itself which should be saved following PyTorch serialization `best practices <https://pytorch.org/docs/stable/notes/serialization.html#best-practices>`__\ ,
* the configuration file of the model which is saved as a JSON file, and
* the vocabulary (and the merges for the BPE-based models GPT and GPT-2).
......
......@@ -3,6 +3,15 @@
In this section a few examples are put together. All of these examples work for several models, making use of the very
similar API between the different models.
**Important**
To run the latest versions of the examples, you have to install from source. Execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
pip install [--editable] .
```
| Section | Description |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [TensorFlow 2.0 models on GLUE](#TensorFlow-2.0-Bert-models-on-GLUE) | Examples running BERT TensorFlow 2.0 model on the GLUE tasks.
......@@ -12,6 +21,7 @@ similar API between the different models.
| [SQuAD](#squad) | Using BERT/RoBERTa/XLNet/XLM for question answering, examples with distributed training. |
| [Multiple Choice](#multiple-choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks.
| [Named Entity Recognition](#named-entity-recognition) | Using BERT for Named Entity Recognition (NER) on the CoNLL 2003 dataset, examples with distributed training. |
| [XNLI](#xnli) | Examples running BERT/XLM on the XNLI benchmark. |
| [Abstractive summarization](#abstractive-summarization) | Fine-tuning the library models for abstractive summarization tasks on the CNN/Daily Mail dataset. |
## TensorFlow 2.0 Bert models on GLUE
......@@ -554,6 +564,16 @@ On the test dataset the following results could be achieved:
10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085
```
### Comparing BERT (large, cased), RoBERTa (large, cased) and DistilBERT (base, uncased)
Here is a small comparison between BERT (large, cased), RoBERTa (large, cased) and DistilBERT (base, uncased) with the same hyperparameters as specified in the [example documentation](https://huggingface.co/transformers/examples.html#named-entity-recognition) (one run):
| Model | F-Score Dev | F-Score Test
| --------------------------------- | ------- | --------
| `bert-large-cased` | 95.59 | 91.70
| `roberta-large` | 95.96 | 91.87
| `distilbert-base-uncased` | 94.34 | 90.32
## Abstractive summarization
Based on the script
......@@ -581,3 +601,43 @@ python run_summarization_finetuning.py \
--do_train \
--data_path=$DATA_PATH \
```
## XNLI
Based on the script [`run_xnli.py`](https://github.com/huggingface/transformers/blob/master/examples/run_xnli.py).
[XNLI](https://www.nyu.edu/projects/bowman/xnli/) is crowd-sourced dataset based on [MultiNLI](http://www.nyu.edu/projects/bowman/multinli/). It is an evaluation benchmark for cross-lingual text representations. Pairs of text are labeled with textual entailment annotations for 15 different languages (including both high-ressource language such as English and low-ressource languages such as Swahili).
#### Fine-tuning on XNLI
This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins
on a single tesla V100 16GB. The data for XNLI can be downloaded with the following links and should be both saved (and un-zipped) in a
`$XNLI_DIR` directory.
* [XNLI 1.0](https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip)
* [XNLI-MT 1.0](https://www.nyu.edu/projects/bowman/xnli/XNLI-MT-1.0.zip)
```bash
export XNLI_DIR=/path/to/XNLI
python run_xnli.py \
--model_type bert \
--model_name_or_path bert-base-multilingual-cased \
--language de \
--train_language en \
--do_train \
--do_eval \
--data_dir $XNLI_DIR \
--per_gpu_train_batch_size 32 \
--learning_rate 5e-5 \
--num_train_epochs 2.0 \
--max_seq_length 128 \
--output_dir /tmp/debug_xnli/ \
--save_steps -1
```
Training with the previously defined hyper-parameters yields the following results on the **test** set:
```bash
acc = 0.7093812375249501
```
from pathlib import Path
import tarfile
import urllib.request
import torch
from transformers.tokenization_camembert import CamembertTokenizer
from transformers.modeling_camembert import CamembertForMaskedLM
def fill_mask(masked_input, model, tokenizer, topk=5):
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('<mask>') == 1
input_ids = torch.tensor(tokenizer.encode(masked_input, add_special_tokens=True)).unsqueeze(0) # Batch size 1
logits = model(input_ids)[0] # The last hidden-state is the first element of the output tuple
masked_index = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
logits = logits[0, masked_index, :]
prob = logits.softmax(dim=0)
values, indices = prob.topk(k=topk, dim=0)
topk_predicted_token_bpe = ' '.join([tokenizer.convert_ids_to_tokens(indices[i].item())
for i in range(len(indices))])
masked_token = tokenizer.mask_token
topk_filled_outputs = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ')):
predicted_token = predicted_token_bpe.replace('\u2581', ' ')
if " {0}".format(masked_token) in masked_input:
topk_filled_outputs.append((
masked_input.replace(
' {0}'.format(masked_token), predicted_token
),
values[index].item(),
predicted_token,
))
else:
topk_filled_outputs.append((
masked_input.replace(masked_token, predicted_token),
values[index].item(),
predicted_token,
))
return topk_filled_outputs
tokenizer = CamembertTokenizer.from_pretrained('camembert-base')
model = CamembertForMaskedLM.from_pretrained('camembert-base')
model.eval()
masked_input = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))
......@@ -41,7 +41,7 @@ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
from transformers import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer,
AdamW, cached_path, WEIGHTS_NAME, CONFIG_NAME,
WarmupLinearSchedule)
get_linear_schedule_with_warmup)
ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
......@@ -211,7 +211,7 @@ def main():
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
if args.do_train:
nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
......@@ -237,7 +237,7 @@ def main():
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment