Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
a1994a71
Commit
a1994a71
authored
Dec 05, 2019
by
Rémi Louf
Committed by
Julien Chaumond
Dec 09, 2019
Browse files
simplified model and configuration
parent
3a9a9f78
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
10 additions
and
59 deletions
+10
-59
examples/summarization/configuration_bertabs.py
examples/summarization/configuration_bertabs.py
+0
-22
examples/summarization/modeling_bertabs.py
examples/summarization/modeling_bertabs.py
+7
-34
examples/summarization/run_summarization.py
examples/summarization/run_summarization.py
+3
-3
No files found.
examples/summarization/configuration_bertabs.py
View file @
a1994a71
...
...
@@ -33,17 +33,6 @@ class BertAbsConfig(PretrainedConfig):
r
""" Class to store the configuration of the BertAbs model.
Arguments:
temp_dir: string
Unused in the current situation. Kept for compatibility but will be removed.
finetune_bert: bool
Whether to fine-tune the model or not. Will be kept for reference
in case we want to add the possibility to fine-tune the model.
large: bool
Whether to use bert-large as a base.
share_emb: book
Whether the embeddings are shared between the encoder and decoder.
encoder: string
Not clear what this does. Leave to "bert" for pre-trained weights.
max_pos: int
The maximum sequence length that this model will be used with.
enc_layer: int
...
...
@@ -77,11 +66,6 @@ class BertAbsConfig(PretrainedConfig):
def
__init__
(
self
,
vocab_size_or_config_json_file
=
30522
,
temp_dir
=
"."
,
finetune_bert
=
False
,
large
=
False
,
share_emb
=
True
,
encoder
=
"bert"
,
max_pos
=
512
,
enc_layers
=
6
,
enc_hidden_size
=
512
,
...
...
@@ -104,21 +88,15 @@ class BertAbsConfig(PretrainedConfig):
for
key
,
value
in
json_config
.
items
():
self
.
__dict__
[
key
]
=
value
elif
isinstance
(
vocab_size_or_config_json_file
,
int
):
self
.
temp_dir
=
temp_dir
self
.
finetune_bert
=
finetune_bert
self
.
large
=
large
self
.
vocab_size
=
vocab_size_or_config_json_file
self
.
max_pos
=
max_pos
self
.
encoder
=
encoder
self
.
enc_layers
=
enc_layers
self
.
enc_hidden_size
=
enc_hidden_size
self
.
enc_heads
=
enc_heads
self
.
enc_ff_size
=
enc_ff_size
self
.
enc_dropout
=
enc_dropout
self
.
share_emb
=
share_emb
self
.
dec_layers
=
dec_layers
self
.
dec_hidden_size
=
dec_hidden_size
self
.
dec_heads
=
dec_heads
...
...
examples/summarization/modeling_bertabs.py
View file @
a1994a71
...
...
@@ -53,7 +53,7 @@ class BertAbs(BertAbsPreTrainedModel):
def
__init__
(
self
,
args
,
checkpoint
=
None
,
bert_extractive_checkpoint
=
None
):
super
(
BertAbs
,
self
).
__init__
(
args
)
self
.
args
=
args
self
.
bert
=
Bert
(
args
.
large
,
args
.
temp_dir
,
args
.
finetune_bert
)
self
.
bert
=
Bert
()
# If pre-trained weights are passed for Bert, load these.
load_bert_pretrained_extractive
=
True
if
bert_extractive_checkpoint
else
False
...
...
@@ -69,18 +69,6 @@ class BertAbs(BertAbsPreTrainedModel):
strict
=
True
,
)
if
args
.
encoder
==
"baseline"
:
bert_config
=
BertConfig
(
self
.
bert
.
model
.
config
.
vocab_size
,
hidden_size
=
args
.
enc_hidden_size
,
num_hidden_layers
=
args
.
enc_layers
,
num_attention_heads
=
8
,
intermediate_size
=
args
.
enc_ff_size
,
hidden_dropout_prob
=
args
.
enc_dropout
,
attention_probs_dropout_prob
=
args
.
enc_dropout
,
)
self
.
bert
.
model
=
BertModel
(
bert_config
)
self
.
vocab_size
=
self
.
bert
.
model
.
config
.
vocab_size
if
args
.
max_pos
>
512
:
...
...
@@ -101,10 +89,10 @@ class BertAbs(BertAbsPreTrainedModel):
tgt_embeddings
=
nn
.
Embedding
(
self
.
vocab_size
,
self
.
bert
.
model
.
config
.
hidden_size
,
padding_idx
=
0
)
if
self
.
args
.
share_emb
:
tgt_embeddings
.
weight
=
copy
.
deepcopy
(
self
.
bert
.
model
.
embeddings
.
word_embeddings
.
weight
)
tgt_embeddings
.
weight
=
copy
.
deepcopy
(
self
.
bert
.
model
.
embeddings
.
word_embeddings
.
weight
)
self
.
decoder
=
TransformerDecoder
(
self
.
args
.
dec_layers
,
...
...
@@ -141,16 +129,6 @@ class BertAbs(BertAbsPreTrainedModel):
else
:
p
.
data
.
zero_
()
def
maybe_tie_embeddings
(
self
,
args
):
if
args
.
use_bert_emb
:
tgt_embeddings
=
nn
.
Embedding
(
self
.
vocab_size
,
self
.
bert
.
model
.
config
.
hidden_size
,
padding_idx
=
0
)
tgt_embeddings
.
weight
=
copy
.
deepcopy
(
self
.
bert
.
model
.
embeddings
.
word_embeddings
.
weight
)
self
.
decoder
.
embeddings
=
tgt_embeddings
def
forward
(
self
,
encoder_input_ids
,
...
...
@@ -178,14 +156,9 @@ class Bert(nn.Module):
""" This class is not really necessary and should probably disappear.
"""
def
__init__
(
self
,
large
,
temp_dir
,
finetune
=
False
):
def
__init__
(
self
):
super
(
Bert
,
self
).
__init__
()
if
large
:
self
.
model
=
BertModel
.
from_pretrained
(
"bert-large-uncased"
,
cache_dir
=
temp_dir
)
else
:
self
.
model
=
BertModel
.
from_pretrained
(
"bert-base-uncased"
,
cache_dir
=
temp_dir
)
self
.
finetune
=
finetune
self
.
model
=
BertModel
.
from_pretrained
(
"bert-base-uncased"
)
def
forward
(
self
,
input_ids
,
attention_mask
=
None
,
token_type_ids
=
None
,
**
kwargs
):
self
.
eval
()
...
...
examples/summarization/run_summarization.py
View file @
a1994a71
...
...
@@ -31,9 +31,9 @@ Batch = namedtuple(
def
evaluate
(
args
):
tokenizer
=
BertTokenizer
.
from_pretrained
(
"bert-base-uncased"
,
do_lower_case
=
True
)
model
=
bertabs
=
BertAbs
.
from_pretrained
(
"bertabs-finetuned-cnndm"
)
bertabs
.
to
(
args
.
device
)
bertabs
.
eval
()
model
=
BertAbs
.
from_pretrained
(
"bertabs-finetuned-cnndm"
)
model
.
to
(
args
.
device
)
model
.
eval
()
symbols
=
{
"BOS"
:
tokenizer
.
vocab
[
"[unused0]"
],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment