Unverified Commit a10f6183 authored by Amanpreet Singh's avatar Amanpreet Singh Committed by GitHub
Browse files

[feat] Add FLAVA model (#16654)

* [WIP] Add FLAVA model

This PR aims to add [FLAVA](ihttps://arxiv.org/abs/2112.04482) model to the transformers repo.

Following checklist delineates the list of things to be done for this PR
to be complete:

[x] Flava init
[x] Flava base models
[x] Flava layers
[x] Flava Configs
[x] Flava encoders
[x] Flava pretraining models
[ ] Flava classification/retrieval models (To be added in a separate PR)
[x] Documentation updates 
[x] Imports updates 
[x] Argstring updates
[x] Flava pretrained checkpoints 
[x] Flava tests
[x] Flava processors 
[x] Sanity check
[x] Lint
parent 7b95825d
......@@ -1787,6 +1787,58 @@ class FlaubertWithLMHeadModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FlavaForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaImageCodebook(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaImageModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaMultimodalModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -59,6 +59,20 @@ class DPTFeatureExtractor(metaclass=DummyObject):
requires_backends(self, ["vision"])
class FlavaFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class FlavaProcessor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class GLPNFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"]
......
# coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import FlavaFeatureExtractor
from transformers.models.flava.feature_extraction_flava import (
FLAVA_CODEBOOK_MEAN,
FLAVA_CODEBOOK_STD,
FLAVA_IMAGE_MEAN,
FLAVA_IMAGE_STD,
)
else:
FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None
class FlavaFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=224,
do_center_crop=True,
crop_size=224,
resample=None,
do_normalize=True,
image_mean=FLAVA_IMAGE_MEAN,
image_std=FLAVA_IMAGE_STD,
input_size_patches=14,
total_mask_patches=75,
mask_group_max_patches=None,
mask_group_min_patches=16,
mask_group_min_aspect_ratio=0.3,
mask_group_max_aspect_ratio=None,
codebook_do_resize=True,
codebook_size=112,
codebook_resample=None,
codebook_do_center_crop=True,
codebook_crop_size=112,
codebook_do_map_pixels=True,
codebook_do_normalize=True,
codebook_image_mean=FLAVA_CODEBOOK_MEAN,
codebook_image_std=FLAVA_CODEBOOK_STD,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.do_resize = do_resize
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.size = size
self.resample = resample if resample is not None else Image.BICUBIC
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample if codebook_resample is not None else Image.LANCZOS
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_std = codebook_image_std
def prepare_feat_extract_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"resample": self.resample,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"input_size_patches": self.input_size_patches,
"total_mask_patches": self.total_mask_patches,
"mask_group_max_patches": self.mask_group_max_patches,
"mask_group_min_patches": self.mask_group_min_patches,
"mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
"mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
"codebook_do_resize": self.codebook_do_resize,
"codebook_size": self.codebook_size,
"codebook_resample": self.codebook_resample,
"codebook_do_center_crop": self.codebook_do_center_crop,
"codebook_crop_size": self.codebook_crop_size,
"codebook_do_map_pixels": self.codebook_do_map_pixels,
"codebook_do_normalize": self.codebook_do_normalize,
"codebook_image_mean": self.codebook_image_mean,
"codebook_image_std": self.codebook_image_std,
}
def get_expected_image_size(self):
return (self.size, self.size) if not isinstance(self.size, tuple) else self.size
def get_expected_mask_size(self):
return (
(self.input_size_patches, self.input_size_patches)
if not isinstance(self.input_size_patches, tuple)
else self.input_size_patches
)
def get_expected_codebook_image_size(self):
if not isinstance(self.codebook_size, tuple):
return (self.codebook_size, self.codebook_size)
else:
return self.codebook_size
@require_torch
@require_vision
class FlavaFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = FlavaFeatureExtractor if is_vision_available() else None
maxDiff = None
def setUp(self):
self.feature_extract_tester = FlavaFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_properties(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feature_extractor, "image_mean"))
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "resample"))
self.assertTrue(hasattr(feature_extractor, "crop_size"))
self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
self.assertTrue(hasattr(feature_extractor, "masking_generator"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_resize"))
self.assertTrue(hasattr(feature_extractor, "codebook_size"))
self.assertTrue(hasattr(feature_extractor, "codebook_resample"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_center_crop"))
self.assertTrue(hasattr(feature_extractor, "codebook_crop_size"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_map_pixels"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_normalize"))
self.assertTrue(hasattr(feature_extractor, "codebook_image_mean"))
self.assertTrue(hasattr(feature_extractor, "codebook_image_std"))
def test_batch_feature(self):
pass
def test_call_pil(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt")
# Test no bool masked pos
self.assertFalse("bool_masked_pos" in encoded_images)
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
# Test no bool masked pos
self.assertFalse("bool_masked_pos" in encoded_images)
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def _test_call_framework(self, instance_class, prepare_kwargs):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, **prepare_kwargs)
for image in image_inputs:
self.assertIsInstance(image, instance_class)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
encoded_images = feature_extractor(image_inputs, return_image_mask=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
expected_height, expected_width = self.feature_extract_tester.get_expected_mask_size()
self.assertEqual(
encoded_images.bool_masked_pos.shape,
(
self.feature_extract_tester.batch_size,
expected_height,
expected_width,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
# Test masking
encoded_images = feature_extractor(image_inputs, return_image_mask=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
expected_height, expected_width = self.feature_extract_tester.get_expected_mask_size()
self.assertEqual(
encoded_images.bool_masked_pos.shape,
(
self.feature_extract_tester.batch_size,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
def test_call_pytorch(self):
self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})
def test_masking(self):
# Initialize feature_extractor
random.seed(1234)
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_image_mask=True, return_tensors="pt")
self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)
def test_codebook_pixels(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_codebook_image_size()
self.assertEqual(
encoded_images.codebook_pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_codebook_pixels=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_codebook_image_size()
self.assertEqual(
encoded_images.codebook_pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
This diff is collapsed.
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import random
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import FlavaFeatureExtractor, FlavaProcessor
from transformers.models.flava.feature_extraction_flava import (
FLAVA_CODEBOOK_MEAN,
FLAVA_CODEBOOK_STD,
FLAVA_IMAGE_MEAN,
FLAVA_IMAGE_STD,
)
@require_vision
class FlavaProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
# fmt: off
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
# fmt: on
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write("".join([x + "\n" for x in vocab_tokens]))
feature_extractor_map = {
"image_mean": FLAVA_IMAGE_MEAN,
"image_std": FLAVA_IMAGE_STD,
"do_normalize": True,
"do_resize": True,
"size": 224,
"do_center_crop": True,
"crop_size": 224,
"input_size_patches": 14,
"total_mask_patches": 75,
"mask_group_max_patches": None,
"mask_group_min_patches": 16,
"mask_group_min_aspect_ratio": 0.3,
"mask_group_max_aspect_ratio": None,
"codebook_do_resize": True,
"codebook_size": 112,
"codebook_resample": None,
"codebook_do_center_crop": True,
"codebook_crop_size": 112,
"codebook_do_map_pixels": True,
"codebook_do_normalize": True,
"codebook_image_mean": FLAVA_CODEBOOK_MEAN,
"codebook_image_std": FLAVA_CODEBOOK_STD,
}
self.feature_extractor_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.feature_extractor_file, "w", encoding="utf-8") as fp:
json.dump(feature_extractor_map, fp)
def get_tokenizer(self, **kwargs):
return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return FlavaFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_default(self):
tokenizer_slow = self.get_tokenizer()
tokenizer_fast = self.get_rust_tokenizer()
feature_extractor = self.get_feature_extractor()
processor_slow = FlavaProcessor(tokenizer=tokenizer_slow, feature_extractor=feature_extractor)
processor_slow.save_pretrained(self.tmpdirname)
processor_slow = FlavaProcessor.from_pretrained(self.tmpdirname, use_fast=False)
processor_fast = FlavaProcessor(tokenizer=tokenizer_fast, feature_extractor=feature_extractor)
processor_fast.save_pretrained(self.tmpdirname)
processor_fast = FlavaProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer, BertTokenizer)
self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast)
self.assertEqual(processor_slow.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertEqual(processor_fast.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor_slow.feature_extractor, FlavaFeatureExtractor)
self.assertIsInstance(processor_fast.feature_extractor, FlavaFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = FlavaProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = FlavaProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, BertTokenizerFast)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, FlavaFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = FlavaProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
image_input = self.prepare_image_inputs()
input_feat_extract = feature_extractor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
# With rest of the args
random.seed(1234)
input_feat_extract = feature_extractor(
image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np"
)
random.seed(1234)
input_processor = processor(
images=image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np"
)
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = FlavaProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "lower newer"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = FlavaProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"])
# add extra args
inputs = processor(text=input_str, images=image_input, return_codebook_pixels=True, return_image_mask=True)
self.assertListEqual(
list(inputs.keys()),
[
"input_ids",
"token_type_ids",
"attention_mask",
"pixel_values",
"codebook_pixel_values",
"bool_masked_pos",
],
)
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = FlavaProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
......@@ -146,6 +146,10 @@ IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
"DetrForSegmentation",
"DPRReader",
"FlaubertForQuestionAnswering",
"FlavaImageCodebook",
"FlavaTextModel",
"FlavaImageModel",
"FlavaMultimodalModel",
"GPT2DoubleHeadsModel",
"LukeForMaskedLM",
"LukeForEntityClassification",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment