Unverified Commit a074a5d3 authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

Docs: change some `input_ids` doc reference from `BertTokenizer` to `AutoTokenizer` (#24730)

parent 25411085
......@@ -32,7 +32,7 @@ LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -17,7 +17,7 @@ STOPPING_CRITERIA_INPUTS_DOCSTRING = r"""
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -576,7 +576,7 @@ BART_INPUTS_DOCSTRING = r"""
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -65,7 +65,7 @@ BRIDGETOWER_START_DOCSTRING = r"""
BRIDGETOWER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`BertTokenizer`]. See
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
......
......@@ -943,7 +943,7 @@ CLIP_TEXT_INPUTS_DOCSTRING = r"""
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
......@@ -1000,7 +1000,7 @@ CLIP_INPUTS_DOCSTRING = r"""
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -882,7 +882,7 @@ FUNNEL_INPUTS_DOCSTRING = r"""
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -1502,7 +1502,7 @@ GROUPVIT_TEXT_INPUTS_DOCSTRING = r"""
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
......@@ -1560,7 +1560,7 @@ GROUPVIT_INPUTS_DOCSTRING = r"""
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -1560,7 +1560,7 @@ LED_INPUTS_DOCSTRING = r"""
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -106,7 +106,7 @@ MMBT_INPUTS_DOCSTRING = r"""
Encoder, the shape would be (batch_size, channels, height, width)
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. It does not expect [CLS] token to be added as it's
appended to the end of other modality embeddings. Indices can be obtained using [`BertTokenizer`]. See
appended to the end of other modality embeddings. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -761,7 +761,7 @@ MOBILEBERT_INPUTS_DOCSTRING = r"""
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -960,7 +960,7 @@ T5_INPUTS_DOCSTRING = r"""
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
should be able to pad the inputs on the right or the left.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -814,7 +814,7 @@ TRANSFO_XL_INPUTS_DOCSTRING = r"""
input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
......
......@@ -610,7 +610,7 @@ VILT_START_DOCSTRING = r"""
VILT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`BertTokenizer`]. See
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
......@@ -665,7 +665,7 @@ VILT_INPUTS_DOCSTRING = r"""
VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`BertTokenizer`]. See
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
......
......@@ -851,7 +851,7 @@ class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel):
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See
Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for
details.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment