Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
a049c804
Commit
a049c804
authored
Sep 25, 2019
by
thomwolf
Browse files
push fix to training
parent
5def3302
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
75 additions
and
4 deletions
+75
-4
examples/run_glue.py
examples/run_glue.py
+1
-1
examples/run_tf_glue.py
examples/run_tf_glue.py
+69
-0
pytorch_transformers/configuration_utils.py
pytorch_transformers/configuration_utils.py
+1
-0
pytorch_transformers/data/processors/utils.py
pytorch_transformers/data/processors/utils.py
+1
-0
pytorch_transformers/modeling_tf_utils.py
pytorch_transformers/modeling_tf_utils.py
+1
-1
pytorch_transformers/modeling_utils.py
pytorch_transformers/modeling_utils.py
+2
-2
No files found.
examples/run_glue.py
View file @
a049c804
...
@@ -154,8 +154,8 @@ def train(args, train_dataset, model, tokenizer):
...
@@ -154,8 +154,8 @@ def train(args, train_dataset, model, tokenizer):
tr_loss
+=
loss
.
item
()
tr_loss
+=
loss
.
item
()
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
scheduler
.
step
()
# Update learning rate schedule
optimizer
.
step
()
optimizer
.
step
()
scheduler
.
step
()
# Update learning rate schedule
model
.
zero_grad
()
model
.
zero_grad
()
global_step
+=
1
global_step
+=
1
...
...
examples/run_tf_glue.py
0 → 100644
View file @
a049c804
import
tensorflow
as
tf
import
tensorflow_datasets
from
pytorch_transformers
import
BertTokenizer
,
BertForSequenceClassification
,
TFBertForSequenceClassification
,
glue_convert_examples_to_features
# Load tokenizer, model, dataset
tokenizer
=
BertTokenizer
.
from_pretrained
(
'bert-base-cased'
)
tf_model
=
TFBertForSequenceClassification
.
from_pretrained
(
'bert-base-cased'
)
dataset
=
tensorflow_datasets
.
load
(
"glue/mrpc"
)
# Prepare dataset for GLUE
train_dataset
=
glue_convert_examples_to_features
(
dataset
[
'train'
],
tokenizer
,
task
=
'mrpc'
,
max_length
=
128
)
valid_dataset
=
glue_convert_examples_to_features
(
dataset
[
'validation'
],
tokenizer
,
task
=
'mrpc'
,
max_length
=
128
)
train_dataset
=
train_dataset
.
shuffle
(
100
).
batch
(
32
).
repeat
(
3
)
valid_dataset
=
valid_dataset
.
batch
(
64
)
# Compile tf.keras model for training
learning_rate
=
tf
.
keras
.
optimizers
.
schedules
.
PolynomialDecay
(
2e-5
,
345
,
end_learning_rate
=
0
)
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
)
tf_model
.
compile
(
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
learning_rate
,
epsilon
=
1e-08
,
clipnorm
=
1.0
),
loss
=
loss
,
metrics
=
[
'sparse_categorical_accuracy'
])
# Train and evaluate using tf.keras.Model.fit()
tf_model
.
fit
(
train_dataset
,
epochs
=
3
,
steps_per_epoch
=
115
,
validation_data
=
valid_dataset
,
validation_steps
=
7
)
# Save the model and load it in PyTorch
tf_model
.
save_pretrained
(
'./runs/'
)
pt_model
=
BertForSequenceClassification
.
from_pretrained
(
'./runs/'
)
# Quickly inspect a few predictions
# Divers
import
torch
import
tensorflow
as
tf
import
tensorflow_datasets
from
pytorch_transformers
import
BertTokenizer
,
BertForSequenceClassification
,
TFBertForSequenceClassification
,
glue_convert_examples_to_features
# Load tokenizer, model, dataset
tokenizer
=
BertTokenizer
.
from_pretrained
(
'bert-base-cased'
)
model
=
TFBertForSequenceClassification
.
from_pretrained
(
'bert-base-cased'
)
pt_train_dataset
=
torch
.
load
(
'../../data/glue_data//MRPC/cached_train_bert-base-cased_128_mrpc'
)
def
gen
():
for
el
in
pt_train_dataset
:
yield
((
el
.
input_ids
,
el
.
attention_mask
,
el
.
token_type_ids
),
(
el
.
label
,))
dataset
=
tf
.
data
.
Dataset
.
from_generator
(
gen
,
((
tf
.
int32
,
tf
.
int32
,
tf
.
int32
),
(
tf
.
int64
,)),
((
tf
.
TensorShape
([
None
]),
tf
.
TensorShape
([
None
]),
tf
.
TensorShape
([
None
])),
(
tf
.
TensorShape
([]),)))
dataset
=
dataset
.
shuffle
(
100
).
batch
(
32
)
next
(
iter
(
dataset
))
learning_rate
=
tf
.
keras
.
optimizers
.
schedules
.
PolynomialDecay
(
2e-5
,
345
,
0
)
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
)
model
.
compile
(
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
learning_rate
,
epsilon
=
1e-08
,
clipnorm
=
1.0
),
loss
=
loss
,
metrics
=
[[
'sparse_categorical_accuracy'
]])
tensorboard_cbk
=
tf
.
keras
.
callbacks
.
TensorBoard
(
log_dir
=
'./runs/'
,
update_freq
=
10
,
histogram_freq
=
1
)
# Train model
model
.
fit
(
dataset
,
epochs
=
3
,
callbacks
=
[
tensorboard_cbk
])
pytorch_transformers/configuration_utils.py
View file @
a049c804
...
@@ -67,6 +67,7 @@ class PretrainedConfig(object):
...
@@ -67,6 +67,7 @@ class PretrainedConfig(object):
output_config_file
=
os
.
path
.
join
(
save_directory
,
CONFIG_NAME
)
output_config_file
=
os
.
path
.
join
(
save_directory
,
CONFIG_NAME
)
self
.
to_json_file
(
output_config_file
)
self
.
to_json_file
(
output_config_file
)
logger
.
info
(
"Configuration saved in {}"
.
format
(
output_config_file
))
@
classmethod
@
classmethod
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
**
kwargs
):
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
**
kwargs
):
...
...
pytorch_transformers/data/processors/utils.py
View file @
a049c804
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
import
csv
import
csv
import
sys
import
sys
import
copy
import
copy
import
json
class
InputExample
(
object
):
class
InputExample
(
object
):
"""A single training/test example for simple sequence classification."""
"""A single training/test example for simple sequence classification."""
...
...
pytorch_transformers/modeling_tf_utils.py
View file @
a049c804
...
@@ -132,8 +132,8 @@ class TFPreTrainedModel(tf.keras.Model):
...
@@ -132,8 +132,8 @@ class TFPreTrainedModel(tf.keras.Model):
# If we save using the predefined names, we can load using `from_pretrained`
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file
=
os
.
path
.
join
(
save_directory
,
TF2_WEIGHTS_NAME
)
output_model_file
=
os
.
path
.
join
(
save_directory
,
TF2_WEIGHTS_NAME
)
self
.
save_weights
(
output_model_file
)
self
.
save_weights
(
output_model_file
)
logger
.
info
(
"Model weights saved in {}"
.
format
(
output_model_file
))
@
classmethod
@
classmethod
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
):
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
):
...
...
pytorch_transformers/modeling_utils.py
View file @
a049c804
...
@@ -201,8 +201,8 @@ class PreTrainedModel(nn.Module):
...
@@ -201,8 +201,8 @@ class PreTrainedModel(nn.Module):
# If we save using the predefined names, we can load using `from_pretrained`
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file
=
os
.
path
.
join
(
save_directory
,
WEIGHTS_NAME
)
output_model_file
=
os
.
path
.
join
(
save_directory
,
WEIGHTS_NAME
)
torch
.
save
(
model_to_save
.
state_dict
(),
output_model_file
)
torch
.
save
(
model_to_save
.
state_dict
(),
output_model_file
)
logger
.
info
(
"Model weights saved in {}"
.
format
(
output_model_file
))
@
classmethod
@
classmethod
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
):
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
):
...
@@ -305,7 +305,7 @@ class PreTrainedModel(nn.Module):
...
@@ -305,7 +305,7 @@ class PreTrainedModel(nn.Module):
archive_file
=
os
.
path
.
join
(
pretrained_model_name_or_path
,
WEIGHTS_NAME
)
archive_file
=
os
.
path
.
join
(
pretrained_model_name_or_path
,
WEIGHTS_NAME
)
else
:
else
:
raise
EnvironmentError
(
"Error no file named {} found in directory {}"
.
format
(
raise
EnvironmentError
(
"Error no file named {} found in directory {}"
.
format
(
tuple
(
WEIGHTS_NAME
,
TF2_WEIGHTS_NAME
,
TF_WEIGHTS_NAME
+
".index"
)
,
[
WEIGHTS_NAME
,
TF2_WEIGHTS_NAME
,
TF_WEIGHTS_NAME
+
".index"
]
,
pretrained_model_name_or_path
))
pretrained_model_name_or_path
))
elif
os
.
path
.
isfile
(
pretrained_model_name_or_path
):
elif
os
.
path
.
isfile
(
pretrained_model_name_or_path
):
archive_file
=
pretrained_model_name_or_path
archive_file
=
pretrained_model_name_or_path
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment