Unverified Commit a0042379 authored by Sourab Mangrulkar's avatar Sourab Mangrulkar Committed by GitHub
Browse files

fix deepspeed load best model at end when the model gets sharded (#25057)

parent 1689aea7
...@@ -2093,71 +2093,70 @@ class Trainer: ...@@ -2093,71 +2093,70 @@ class Trainer:
best_safe_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_SAFE_WEIGHTS_NAME) best_safe_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_SAFE_WEIGHTS_NAME)
model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if ( if self.is_deepspeed_enabled:
deepspeed_load_checkpoint(self.model_wrapped, self.state.best_model_checkpoint)
elif (
os.path.exists(best_model_path) os.path.exists(best_model_path)
or os.path.exists(best_safe_model_path) or os.path.exists(best_safe_model_path)
or os.path.exists(best_adapter_model_path) or os.path.exists(best_adapter_model_path)
or os.path.exists(best_safe_adapter_model_path) or os.path.exists(best_safe_adapter_model_path)
): ):
if self.is_deepspeed_enabled: has_been_loaded = True
deepspeed_load_checkpoint(self.model_wrapped, self.state.best_model_checkpoint) if is_sagemaker_mp_enabled():
else: if os.path.isfile(os.path.join(self.state.best_model_checkpoint, "user_content.pt")):
has_been_loaded = True # If the 'user_content.pt' file exists, load with the new smp api.
if is_sagemaker_mp_enabled(): # Checkpoint must have been saved with the new smp api.
if os.path.isfile(os.path.join(self.state.best_model_checkpoint, "user_content.pt")): smp.resume_from_checkpoint(
# If the 'user_content.pt' file exists, load with the new smp api. path=self.state.best_model_checkpoint,
# Checkpoint must have been saved with the new smp api. tag=WEIGHTS_NAME,
smp.resume_from_checkpoint( partial=False,
path=self.state.best_model_checkpoint, load_optimizer=False,
tag=WEIGHTS_NAME,
partial=False,
load_optimizer=False,
)
else:
# If the 'user_content.pt' file does NOT exist, load with the old smp api.
# Checkpoint must have been saved with the old smp api.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
elif self.is_fsdp_enabled:
load_result = load_fsdp_model(
self.accelerator.state.fsdp_plugin, self.accelerator, model, self.state.best_model_checkpoint
) )
else: else:
if is_peft_available() and isinstance(model, PeftModel): # If the 'user_content.pt' file does NOT exist, load with the old smp api.
# If train a model using PEFT & LoRA, assume that adapter have been saved properly. # Checkpoint must have been saved with the old smp api.
if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"): if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
if os.path.exists(best_adapter_model_path) or os.path.exists(best_safe_adapter_model_path): state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter) else:
# Load_adapter has no return value present, modify it when appropriate. state_dict = torch.load(best_model_path, map_location="cpu")
from torch.nn.modules.module import _IncompatibleKeys
state_dict["_smp_is_partial"] = False
load_result = _IncompatibleKeys([], []) load_result = model.load_state_dict(state_dict, strict=True)
else: elif self.is_fsdp_enabled:
logger.warning( load_result = load_fsdp_model(
"The intermediate checkpoints of PEFT may not be saved correctly, " self.accelerator.state.fsdp_plugin, self.accelerator, model, self.state.best_model_checkpoint
f"consider using a custom callback to save {ADAPTER_WEIGHTS_NAME} in corresponding saving folders. " )
"Check some examples here: https://github.com/huggingface/peft/issues/96" else:
) if is_peft_available() and isinstance(model, PeftModel):
has_been_loaded = False # If train a model using PEFT & LoRA, assume that adapter have been saved properly.
if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"):
if os.path.exists(best_adapter_model_path) or os.path.exists(best_safe_adapter_model_path):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
# Load_adapter has no return value present, modify it when appropriate.
from torch.nn.modules.module import _IncompatibleKeys
load_result = _IncompatibleKeys([], [])
else: else:
logger.warning("Could not load adapter model, make sure to have `peft>=0.3.0` installed") logger.warning(
"The intermediate checkpoints of PEFT may not be saved correctly, "
f"consider using a custom callback to save {ADAPTER_WEIGHTS_NAME} in corresponding saving folders. "
"Check some examples here: https://github.com/huggingface/peft/issues/96"
)
has_been_loaded = False has_been_loaded = False
else: else:
# We load the model state dict on the CPU to avoid an OOM error. logger.warning("Could not load adapter model, make sure to have `peft>=0.3.0` installed")
if self.args.save_safetensors and os.path.isfile(best_safe_model_path): has_been_loaded = False
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu") else:
else: # We load the model state dict on the CPU to avoid an OOM error.
state_dict = torch.load(best_model_path, map_location="cpu") if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
# If the model is on the GPU, it still works! # If the model is on the GPU, it still works!
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963 # workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
# which takes *args instead of **kwargs # which takes *args instead of **kwargs
load_result = model.load_state_dict(state_dict, False) load_result = model.load_state_dict(state_dict, False)
if not is_sagemaker_mp_enabled() and has_been_loaded: if not is_sagemaker_mp_enabled() and has_been_loaded:
self._issue_warnings_after_load(load_result) self._issue_warnings_after_load(load_result)
elif os.path.exists(os.path.join(self.state.best_model_checkpoint, WEIGHTS_INDEX_NAME)): elif os.path.exists(os.path.join(self.state.best_model_checkpoint, WEIGHTS_INDEX_NAME)):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment