DistilBERT is a small, fast, cheap and light Transformer model
trained by distilling Bert base. It has 40% less parameters than
`bert-base-uncased`, runs 60% faster while preserving over 95% of
Bert's performances as measured on the GLUE language understanding benchmark.
Here are the differences between the interface of Bert and DistilBert:
The DistilBERT model was proposed in the blog post
`Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT <https://medium.com/huggingface/distilbert-8cf3380435b5>`__,
and the paper `DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__.
DistilBERT is a small, fast, cheap and light Transformer model trained by distilling Bert base. It has 40% less
parameters than `bert-base-uncased`, runs 60% faster while preserving over 95% of Bert's performances as measured on
the GLUE language understanding benchmark.
The abstract from the paper is the following:
*As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP),
operating these large models in on-the-edge and/or under constrained computational training or inference budgets
remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation
model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger
counterparts. While most prior work investigated the use of distillation for building task-specific models, we
leverage knowledge distillation during the pre-training phase and show that it is possible to reduce the size of a
BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage
the inductive biases learned by larger models during pre-training, we introduce a triple loss combining language
modeling, distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train
and we demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative
on-device study.*
Tips:
- DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
- DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option.
For more information on DistilBERT, please refer to our
The XLM-RoBERTa model was proposed in `Unsupervised Cross-lingual Representation Learning at Scale`_
by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019.
The XLM-RoBERTa model was proposed in `Unsupervised Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__
by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán,
Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019.
It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data.
This implementation is the same as RoBERTa.
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
The abstract from the paper is the following:
.. _`Unsupervised Cross-lingual Representation Learning at Scale`:
https://arxiv.org/abs/1911.02116
*This paper shows that pretraining multilingual language models at scale leads to significant performance gains for
a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred
languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly
outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8% average accuracy
on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R performs particularly well on
low-resource languages, improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the previous XLM model.
We also present a detailed empirical evaluation of the key factors that are required to achieve these gains,
including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and
low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling
without sacrificing per-language performance; XLM-Ris very competitive with strong monolingual models on the GLUE
and XNLI benchmarks. We will make XLM-R code, data, and models publicly available.*
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Tips:
- This implementation is the same as RoBERTa. Refer to the `documentation of RoBERTa <./roberta.html>`__ for usage
examples as well as the information relative to the inputs and outputs.