Unverified Commit 9c6f7485 authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Add GIT (GenerativeImage2Text) (#20295)



* First draft

* Make model instantiation work

* Fix copied from statement

* More fixes

* Add correct output head

* Improve configuration

* Add conversion script

* Improve conversion script

* Remove token_type_ids

* Fix conversion of projection layers

* Convert all weights

* Use cats image

* Make logits match

* Generate caption on cats image

* Add GITProcessor

* Update conversion script

* Add support for more checkpoints

* Fix conversion script

* Add initial tests

* Remove cross-attention

* More improvements

* Remove is_decoder

* Improve model tests

* Improve tests

* Improve model outputs

* Fix model outputs equivalence

* Fix more tests

* Remove unused code

* Use generate to generate text, no use of cache for now

* Use generate more appropriately

* Fix config tests

* Fix style

* Add support for use_cache
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>

* Fix style

* Fix GIT vision encoder

* Update README

* Fix integration test

* Set bos and eos token ids

* Improve docs

* Improve code

* Add support for provided attention_mask

* Add copied from statement

* Fix gradient checkpointing test

* Set model_input_names

* Investigate model_input_names

* Remove script

* Fix model inputs

* Fix docstring

* Rename GIT to Git

* Support more models

* Add support for textvqa model

* Add video support

* Extend conversion script for video

* Add support for large variant

* Add support for more models

* Fix config archive map

* Update integration test

* Fix README

* Fix CLIP mean and std

* Update processor

* Fix use_cache for video, thanks @gante

* Remove print statements

* Remove assertion

* Add processor tests

* Fix model_input_names

* Use Auto API for processor

* Fix processor tests

* Fix integration test

* Fix pipeline test

* Make tests faster

* Update conversion script

* Update conversion script

* Convert more checkpoints

* Update conversion script

* Fix typo

* Update docstrings

* Improve code snippets

* Fix doc tests

* Add more code examplesé

* Fix doc tests

* Add integration tests

* Fix unused variable

* revert

* Add GIT to Japanese README
Co-authored-by: default avatarNiels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent 305f41e4
......@@ -316,6 +316,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/main/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
......
......@@ -316,6 +316,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/main/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
......
......@@ -289,6 +289,7 @@ conda install -c huggingface transformers
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (FLAVA: A फाउंडेशनल लैंग्वेज एंड विजन अलाइनमेंट मॉडल) (https://arxiv) साथ वाला पेपर .org/abs/2112.04482) अमनप्रीत सिंह, रोंगहांग हू, वेदानुज गोस्वामी, गुइल्यूम कुएरॉन, वोज्शिएक गालुबा, मार्कस रोहरबैक, और डौवे कीला द्वारा।
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (गूगल रिसर्च से) साथ वाला पेपर [FNet: मिक्सिंग टोकन विद फूरियर ट्रांसफॉर्म्स](https://arxiv.org /abs/2105.03824) जेम्स ली-थॉर्प, जोशुआ आइंस्ली, इल्या एकस्टीन, सैंटियागो ओंटानन द्वारा।
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [फ़नल-ट्रांसफॉर्मर: कुशल भाषा प्रसंस्करण के लिए अनुक्रमिक अतिरेक को छानना](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले ​​द्वारा रिहाई।
1. **[GIT](https://huggingface.co/docs/transformers/main/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [वर्टिकल कटडेप्थ के साथ मोनोकुलर डेप्थ एस्टीमेशन के लिए ग्लोबल-लोकल पाथ नेटवर्क्स](https:/ /arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा।
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI से) साथ में दिया गया पेपर [जेनरेटिव प्री-ट्रेनिंग द्वारा भाषा की समझ में सुधार](https://blog .openai.com/language-unsupervised/) एलेक रैडफोर्ड, कार्तिक नरसिम्हन, टिम सालिमन्स और इल्या सुत्स्केवर द्वारा।
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI से) रिपॉजिटरी के साथ [EleutherAI/gpt-neo](https://github.com/ EleutherAI /gpt-neo) रिलीज। सिड ब्लैक, स्टेला बिडरमैन, लियो गाओ, फिल वांग और कॉनर लेही द्वारा पोस्ट किया गया।
......
......@@ -351,6 +351,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (Facebook AI から) Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela から公開された研究論文: [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482)
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (Google Research から) James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon から公開された研究論文: [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824)
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236)
1. **[GIT](https://huggingface.co/docs/transformers/main/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100)
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436)
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI から) Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever から公開された研究論文: [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/)
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI から) Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy から公開されたレポジトリー : [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo)
......
......@@ -266,6 +266,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/main/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
......
......@@ -290,6 +290,7 @@ conda install -c huggingface transformers
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[GIT](https://huggingface.co/docs/transformers/main/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
......
......@@ -302,6 +302,7 @@ conda install -c huggingface transformers
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/main/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
......
......@@ -512,6 +512,8 @@
title: Donut
- local: model_doc/flava
title: FLAVA
- local: model_doc/git
title: GIT
- local: model_doc/groupvit
title: GroupViT
- local: model_doc/layoutlmv2
......
......@@ -103,6 +103,7 @@ The documentation is organized into five sections:
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
......@@ -276,6 +277,7 @@ Flax), PyTorch, and/or TensorFlow.
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| GIT | ❌ | ❌ | ✅ | ❌ | ❌ |
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
......
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# GIT
## Overview
The GIT model was proposed in [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by
Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. GIT is a decoder-only Transformer
that leverages [CLIP](clip)'s vision encoder to condition the model on vision inputs besides text. The model obtains state-of-the-art results on
image captioning and visual question answering benchmarks.
The abstract from the paper is the following:
*In this paper, we design and train a Generative Image-to-text Transformer, GIT, to unify vision-language tasks such as image/video captioning and question answering. While generative models provide a consistent network architecture between pre-training and fine-tuning, existing work typically contains complex structures (uni/multi-modal encoder/decoder) and depends on external modules such as object detectors/taggers and optical character recognition (OCR). In GIT, we simplify the architecture as one image encoder and one text decoder under a single language modeling task. We also scale up the pre-training data and the model size to boost the model performance. Without bells and whistles, our GIT establishes new state of the arts on 12 challenging benchmarks with a large margin. For instance, our model surpasses the human performance for the first time on TextCaps (138.2 vs. 125.5 in CIDEr). Furthermore, we present a new scheme of generation-based image classification and scene text recognition, achieving decent performance on standard benchmarks.*
Tips:
- GIT is implemented in a very similar way to GPT-2, the only difference being that the model is also conditioned on `pixel_values`.
- One can use [`GitProcessor`] to prepare images for the model, and the `generate` method for autoregressive generation.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg"
alt="drawing" width="600"/>
<small> GIT architecture. Taken from the <a href="https://arxiv.org/abs/2205.14100" target="_blank">original paper</a>. </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/microsoft/GenerativeImage2Text).
## GitVisionConfig
[[autodoc]] GitVisionConfig
## GitVisionModel
[[autodoc]] GitVisionModel
- forward
## GitConfig
[[autodoc]] GitConfig
- all
## GitProcessor
[[autodoc]] GitProcessor
- __call__
## GitModel
[[autodoc]] GitModel
- forward
## GitForCausalLM
[[autodoc]] GitForCausalLM
- forward
\ No newline at end of file
......@@ -256,6 +256,7 @@ _import_structure = {
"models.fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"],
"models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"],
"models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"],
"models.git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitProcessor", "GitVisionConfig"],
"models.glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"],
"models.gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2Tokenizer"],
"models.gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig"],
......@@ -1447,6 +1448,15 @@ else:
"load_tf_weights_in_funnel",
]
)
_import_structure["models.git"].extend(
[
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
)
_import_structure["models.glpn"].extend(
[
"GLPN_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -3595,6 +3605,7 @@ if TYPE_CHECKING:
from .models.fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer
from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer
from .models.git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitProcessor, GitVisionConfig
from .models.glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer
from .models.gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig
......@@ -4610,6 +4621,13 @@ if TYPE_CHECKING:
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
from .models.git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
from .models.glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
......
......@@ -73,6 +73,7 @@ from . import (
fnet,
fsmt,
funnel,
git,
glpn,
gpt2,
gpt_neo,
......
......@@ -77,6 +77,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("fnet", "FNetConfig"),
("fsmt", "FSMTConfig"),
("funnel", "FunnelConfig"),
("git", "GitConfig"),
("glpn", "GLPNConfig"),
("gpt-sw3", "GPT2Config"),
("gpt2", "GPT2Config"),
......@@ -234,6 +235,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("git", "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("glpn", "GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt2", "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt_neo", "GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
......@@ -390,6 +392,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("fnet", "FNet"),
("fsmt", "FairSeq Machine-Translation"),
("funnel", "Funnel Transformer"),
("git", "GIT"),
("glpn", "GLPN"),
("gpt-sw3", "GPT-Sw3"),
("gpt2", "OpenAI GPT-2"),
......
......@@ -54,6 +54,7 @@ IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
("donut-swin", "DonutImageProcessor"),
("dpt", "DPTImageProcessor"),
("flava", "FlavaImageProcessor"),
("git", ("CLIPImageProcessor", "VideoMAEImageProcessor")),
("glpn", "GLPNImageProcessor"),
("groupvit", "CLIPImageProcessor"),
("imagegpt", "ImageGPTImageProcessor"),
......
......@@ -76,6 +76,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("fnet", "FNetModel"),
("fsmt", "FSMTModel"),
("funnel", ("FunnelModel", "FunnelBaseModel")),
("git", "GitModel"),
("glpn", "GLPNModel"),
("gpt-sw3", "GPT2Model"),
("gpt2", "GPT2Model"),
......@@ -264,6 +265,7 @@ MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
("fnet", "FNetForMaskedLM"),
("fsmt", "FSMTForConditionalGeneration"),
("funnel", "FunnelForMaskedLM"),
("git", "GitForCausalLM"),
("gpt-sw3", "GPT2LMHeadModel"),
("gpt2", "GPT2LMHeadModel"),
("gpt_neo", "GPTNeoForCausalLM"),
......@@ -329,6 +331,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("data2vec-text", "Data2VecTextForCausalLM"),
("electra", "ElectraForCausalLM"),
("ernie", "ErnieForCausalLM"),
("git", "GitForCausalLM"),
("gpt-sw3", "GPT2LMHeadModel"),
("gpt2", "GPT2LMHeadModel"),
("gpt_neo", "GPTNeoForCausalLM"),
......
......@@ -46,6 +46,7 @@ PROCESSOR_MAPPING_NAMES = OrderedDict(
("clip", "CLIPProcessor"),
("clipseg", "CLIPSegProcessor"),
("flava", "FlavaProcessor"),
("git", "GITProcessor"),
("groupvit", "CLIPProcessor"),
("layoutlmv2", "LayoutLMv2Processor"),
("layoutlmv3", "LayoutLMv3Processor"),
......
......@@ -137,6 +137,7 @@ else:
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("fsmt", ("FSMTTokenizer", None)),
("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)),
("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
......
......@@ -39,15 +39,14 @@ CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class CLIPTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate an CLIP
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the CLIP
This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the text encoder of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
......@@ -65,7 +64,7 @@ class CLIPTextConfig(PretrainedConfig):
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*,
defaults to 1e-5): The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
......@@ -73,7 +72,7 @@ class CLIPTextConfig(PretrainedConfig):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float``, *optional*, defaults to 1):
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
......@@ -149,15 +148,14 @@ class CLIPTextConfig(PretrainedConfig):
class CLIPVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate an CLIP
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the CLIP
This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
......@@ -181,7 +179,7 @@ class CLIPVisionConfig(PretrainedConfig):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float``, *optional*, defaults to 1):
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
......@@ -258,8 +256,8 @@ class CLIPVisionConfig(PretrainedConfig):
class CLIPConfig(PretrainedConfig):
r"""
[`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a
configuration with the defaults will yield a similar configuration to that of the CLIP
a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
a configuration with the defaults will yield a similar configuration to that of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
......
......@@ -70,10 +70,10 @@ class CLIPImageProcessor(BaseImageProcessor):
method.
do_normalize:
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Image standard deviation.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_git"] = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment