Unverified Commit 9b6610f7 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[ProphetNet] Correct Doc string example (#7944)

* correct xlm prophetnet auto model and examples

* fix line-break docs
parent e174bfeb
...@@ -335,7 +335,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING = OrderedDict( ...@@ -335,7 +335,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING = OrderedDict(
(CTRLConfig, CTRLLMHeadModel), (CTRLConfig, CTRLLMHeadModel),
(ReformerConfig, ReformerModelWithLMHead), (ReformerConfig, ReformerModelWithLMHead),
(BertGenerationConfig, BertGenerationDecoder), (BertGenerationConfig, BertGenerationDecoder),
(ProphetNetConfig, XLMProphetNetForCausalLM), (XLMProphetNetConfig, XLMProphetNetForCausalLM),
(ProphetNetConfig, ProphetNetForCausalLM), (ProphetNetConfig, ProphetNetForCausalLM),
] ]
) )
......
...@@ -1931,14 +1931,21 @@ class ProphetNetForCausalLM(ProphetNetPreTrainedModel): ...@@ -1931,14 +1931,21 @@ class ProphetNetForCausalLM(ProphetNetPreTrainedModel):
>>> logits = outputs.logits >>> logits = outputs.logits
>>> # Model can also be used with EncoderDecoder framework >>> # Model can also be used with EncoderDecoder framework
>>> from transformers import BertTokenizer, EncoderDecoderModel >>> from transformers import BertTokenizer, EncoderDecoderModel, ProphetNetTokenizer
>>> import torch >>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-uncased-large') >>> tokenizer_enc = BertTokenizer.from_pretrained('bert-large-uncased')
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-uncased-large", "patrickvonplaten/prophetnet-decoder-clm-large-uncased") >>> tokenizer_dec = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased')
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-large-uncased", "patrickvonplaten/prophetnet-decoder-clm-large-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(input_ids=inputs["input_ids"], labels=inputs["input_ids"], return_dict=True) >>> ARTICLE = (
... "the us state department said wednesday it had received no "
... "formal word from bolivia that it was expelling the us ambassador there "
... "but said the charges made against him are `` baseless ."
... )
>>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids
>>> labels = tokenizer_dec("us rejects charges against its ambassador in bolivia", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:], return_dict=True)
>>> loss = outputs.loss >>> loss = outputs.loss
""" """
......
...@@ -144,14 +144,21 @@ class XLMProphetNetForCausalLM(ProphetNetForCausalLM): ...@@ -144,14 +144,21 @@ class XLMProphetNetForCausalLM(ProphetNetForCausalLM):
>>> logits = outputs.logits >>> logits = outputs.logits
>>> # Model can also be used with EncoderDecoder framework >>> # Model can also be used with EncoderDecoder framework
>>> from transformers import BertTokenizer, EncoderDecoderModel >>> from transformers import EncoderDecoderModel, XLMProphetNetTokenizer, XLMRobertaTokenizer
>>> import torch >>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-uncased-large') >>> tokenizer_enc = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-uncased-large", "patrickvonplaten/xprophetnet-decoder-clm-large-uncased") >>> tokenizer_dec = XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased')
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("xlm-roberta-large", "patrickvonplaten/xprophetnet-decoder-clm-large-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(input_ids=inputs["input_ids"], labels=inputs["input_ids"]) >>> ARTICLE = (
... "the us state department said wednesday it had received no "
... "formal word from bolivia that it was expelling the us ambassador there "
... "but said the charges made against him are `` baseless ."
... )
>>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids
>>> labels = tokenizer_dec("us rejects charges against its ambassador in bolivia", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:], return_dict=True)
>>> loss = outputs.loss >>> loss = outputs.loss
""" """
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment